IEEE P802.11-94/164a

Slide 1

Multi Rate Support in the MAC

By: R. Valadas - University of Aveiro,

- **B.** Dobyns Photonics,
- W. Diepstraten AT&T GIS,
- P. Brenner LANNAIR

Multi-Rate support in the MAC

IEEE P802.11-94/164a

Slide 2

Why Multiple Rates?

- Extensibility
 - Migration Path to future higher rates.
 - We want to re-use the current spectrum for the future rates.
- Speed/Range Tradeoff
 - Providing the best speed on all the area will be difficult or expensive to the customer. The user will prefer that some areas would be served with a different Quality of Service, rather than having "black spots".
- Speed/Power Consumption Tradeoff
 - IR case: higher rates transmission consume more power, hence the AP may transmit in high rates, while the stations may choose lower rates.

IEEE P802.11-94/164a

Slide 3

Possible Configurations

- Fixed Rate for ESS
 - Not recommended because it restricts ESS to use a single PHY. This limits migration to a complete new network and infrastructure.
 - Would still have an ESS overlap problem.
- Fixed Rate for BSS
 - Would require overlapping BSS's on the different speeds.
 - The NAV will not work when BSS's of different rates overlap.
 - Therefore this is not recommended.
- Multi Rate BSS
 - Need a way to resolve the NAV update issue.
 - -This is the recommended approach.

Multi-Rate support in the MAC

IEEE P802,11-94/164a

Slide 4

MAC Concerns to be analyzed:

- Control Packets (Probes, Beacons, etc) must be heard by all stations
- Multicast/Broadcast must be heard by all stations
- How does a station know which rate to use for transmission?
- How do stations update their NAV for transactions in other speeds?
- · What is the effect of fragmentation.
- How are hidden-stations affected?
- How does CCA work for different speeds?.
- How are Contention Free Services Affected?
- What hooks are needed?

IEEE P802.11-94/164a

Slide 5

Basic assumptions / definitions:

• BSS_BASIC_RATE_SET:

- A set of rates that all the stations on the given BSS are capable of receiving.
- According to the PHYs definitions the default BSS BASIC RATE SETs for the different PHYs will be:
 - » For DS: {1,2}
 - » For FH: {1}
 - » For IR: {1,2}

STATION BASIC RATE:

 A value belonging to the BSS BASIC RATE SET, that is used by the station for its transmissions.

Multi-Rate support in the MAC

IEEE P802.11-94/164a

Clido 6

Basic assumptions / definitions (cont):

EXTENDED_RATE_SET:

 The set of rates beyond the BASIC_RATE_SET that a station supports, this could in the future be {1,2 and future x Mbit/s} for any of the existing plus future PHYs.

PLCP_RATE:

- The rate used for transmitting the PHY preamble, and PLCP header,
- This is transparent to the MAC, but must be the same for all stations in the BSS.
- This assumption is already implemented on all the current PHY proposals.

IEEE P802.11-94/164a

Slide 7

Assumptions:

- The Preamble and the PLCP Headers are transmitted always at the PLCP_RATE
- SIFS, PIFS, DIFS are the same for the whole ESS.
- All the Control, Multicast and Broadcast Messages are sent at one of the STATION_BASIC_RATE set.
- All RTS/CTS are sent at one of the STATION_BASIC_RATE set.
- The RTS/CTS "duration" field is specified in time (usec). This is already in the 802.11 Draft.

Multi-Rate support in the MAC

IEEE P802.11-94/164a

Slide 8

How is the rate selected?

Multiple approaches possible:

- Transmitter to determine rate (Does not require interaction with the receiver).
 - Tx-only decision based on gathered information.
 - Decide on station characteristics (Power Save mode).
 - Or decide on link condition.
- Negotiate rate using the RTS/CTS exchange.
 - This requires Tx-Rx interaction.

Recommend to allow both mechanisms

IEEE P802.11-94/164a

Slide 9

Example:

 Unicast Data Frames are sent on any rate as selected by the transmitter.

The algorithm for selecting this rate is implementation specific.

- Some trivial algorithms could be:
 - » Try high, retransmit on lower (go back to high after T time).
 - » Keep fixed tables for each peer.
 - Active query using management Supported_Rate Request/Responses
 - » Keep dynamic tables for each peer using a signal quality (or any other parameter) dependent algorithm.
 - » And, obviously, transmit always in BASIC_RATE.

Multi-Rate support in the MAC

IEEE P802.11-94/164a

Slide 10

What is needed:

- To allow rate switching, the transmitter should know:
 - The supported rate of the local PHY.
 - The supported rate of the destination PHY.
 - Link quality, Power Saving, or other relevant condition if dynamic switching is used (implementation specific).

IEEE P802.11-94/164a

Slide 11

Hooks required:

- Define a "Supported_Rate" Element to be included in:
 - The "Association Request"
 - The "Association Response"
 - The "Beacon" (usefull for the Ad Hoc networks)
 - Request / Response Management frame to query the capabilities of a destination.

Multi-Rate support in the MAC

IEEE P802.11-94/164a

Slide 12

Hooks required:

- To support rate negotiation, the following elements are defined.
 - "Requested_Rate" in RTS Frame
 - » Indicates the rate that the sender wants to transmit the data.
 - "Granted_Rate" in CTS Frame
 - » Set to "Requested_Rate" if supported and conditions allow, or BASIC_RATE if not.

IEEE P802.11-94/164a

Slide 13

How is the NAV updated:

- RTS/CTS messages are send in BASIC_RATE.
 - No NAV update problem.
- Situation for fragmented frames:
 - Ack (with CTS function) is transmitted at the BASIC_RATE.
 - Not all Stations can understand the duration field in the data frame, but Physical CS will assure deferal.

Multi-Rate support in the MAC

IEEE P802.11-94/164a

Slide 14

Hidden station effects:

- The CTS function (Distribute duration around the receiver) is working fine.
- The RTS function (Distribute duration around transmitter) has a potential problem.
 - NAV is not or incorrectly updated.
 - Stations will hear this transmission and do properly defer until DIFS after !CCA drop.
- The danger is that the Ack gets jammed by those stations that are out of Rx range.
- This problem is basic to the MAC and unrelated to the rate switching (need DIFS>2*SIFS+Ack).
 - Has been detected also in the DTBS proposal.
 - Is also present when RTS/CTS is not used.
 - Same effect occurs when RTS or Data frame has CRC errors.

IEEE P802.11-94/164a

Slide 15

Effect on CCA for different speeds:

- Assumptions about the CCA function:
 - Current PHY's use "Length" to aid in "End Delimiter detection".
 - "Length" is encoded at the common PLCP rate.
 - Use "Length" to control CCA indication, independent of the modulation used in the Payload area.
- Suggest to code the "Length" in "Time" (usec) rather then bits/octets.
 - This makes it bitrate independent.
 - Rate Coding for future speeds can freely be defined in future standards.

Multi-Rate support in the MAC

IEEE P802.11-94/164a

Slide 16

How is Contention Free affected:

- Contention Free services are not affected:
- CF-Ack to be transmitted at the BASIC_RATE.
- The Poll Messages are sent in BASIC_RATE, and NAV operation of hidden stations (or stations not supporting the transmitted rate) is guaranteed by the stations setting their NAVs to the Maximum CF-Burst length.

IEEE P802.11-94/164a

Slide 17

Summary:

- To support Multiple Rate BSSs in a flexible way, we need to specify:
- "Supported_Rate" element.
 - In Association, Beacon and Mngt Request/Response PDU's.
- "Requested_Rate" element / Field (in RTS)
- "Granted_Rate" element / Field (in CTS)
- And a simple set of rules defined above.

Multi-Rate support in the MAC

IEEE P802.11-94/164a

Slide 18

Motion:

Move:

To adopt the recommendations in 94/164 as the basic hooks for the support of Multi rate support in the MAC.

Multi-Rate support in the MAC IEEE P802.11-94/164a
Slide 19

Multi-Rate support in the MAC IEEE P802.11-94/164a