FRAME FORMATS

AN APPROACH BASED ON MINIMAL CHANGES

The Emphasis

- The emphasis was on changing the functionality as little as possible.
 - Defer that to another paper (94/171)
 - Lots of history behind fields
 - Don't want to break something by accident
 - Look at each functionality change, one by one
 - Focus on field order
 - How to PARSE the frame
 - Better definition for some Elements
The First Byte

- Version Field
 » Reduce it to two bits
 » Provide two reserved bits

- Type Field
 » There are only 9 types currently defined
 » do not need the distinction for data, management etc.
 » 4 bit field

Second Byte

- The Control Bits
 » To AP, From AP (no change)
 - History
 » Elements Present, More (no change)
 » Power Management Bits (no change)
 » Contention Free
 - Not gone yet, two bits
 - Retry
 » Redundant, but....
 » Vote to put back if CF goes.
Network ID, Sequence #

- Put NID here for consistency
 - Needed in nearly every frame type

- Sequence #
 - MSDU-ID is a poor choice of name
 - Only need to have a "negligible" rate of packet duplication
 - A count is easier and good enough
 - What was the HASH algorithm

Elements

- Could go in any frame TYPE
 - Needed for PHY specific needs
 - Microcells for DS PHY
 - Backward compatibility

- Every frame is handled the same way
 - Elements are handled consistently
 - Always in the same place
 - Refer to flow chart for parse
 - Placed before any TYPE dependant fields

- Many undefined elements
Version Field and Elements

• How does the version field work?
 » VERSION 1 device will:
 • Reject higher version frames
 • Backward compatibility
 – Table driven?

• Elements
 » VERSION 1 device will:
 • Ignore Elements it doesn't understand
 – It can PARSE them but ignore contents
 • Added only when needed

TYPE Dependant Fields

• Duration there etc.
• Minor change
 » Beacon timestamp, now a fixed field
CRC

- Is the CRC 8 really OK?
 - NO
 - PHY work suggests CRC 16 OK for very short fields
 - MAC should standardize on one CRC
 » IEEE 32 CRC

Frame Lengths

No significant change in frame lengths

<table>
<thead>
<tr>
<th>Frame Type</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTS</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>POLL</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>DATA (fragmented)</td>
<td>27(min)</td>
<td>25(min)</td>
</tr>
<tr>
<td>ACK (fragmented)</td>
<td>9</td>
<td>13</td>
</tr>
</tbody>
</table>
Parsing the Frame

- Consistent for every frame type
 - Simple state machine or code
- Remember that the frame might be bad
 - May need to back everything out if CRC bad
 - Need ‘temporary’ storage anyway

94/171 - Fixing the Fields

- PHY Specific Elements
- Time Stamp in Beacon
- Removing Asynchronous Contention Free
- Fragmentation Field only when needed
- New LOAD Element
- Restore ‘RETRY’ bit