Encoding of frame information contents.

David Bagby
Bob O'Hara
Dave Roberts
AMD
One AMD Place
Sunnyvale, CA 94088-3453

Rick White
Mark Demange
Motorola
50 East Commerce Dr.
Schaumburg, IL 60173

Jon Rosdahl
Novell
122 East 1700 south
m/s C-22-1
Provo, UT 84606-6194

Paper scope

- Talks only about encoding, not what info is needed in a frame.
- Only addresses "payload" of frame, header encoding is constant.
- Examples assume 94/214a as frame contents.
B2 draft approach

• Elements
 - Singly linked list
 - Element Format
 » Element code, one octet
 » Link field, one octet
 • 1 bit = more elements
 • 7 bits = length of element
 » Element value, 1-n octets
 - EP bit in header indicates if elements are present in frame body.

B2 draft approach

• B2 element encoding problems:
 - Allows arbitrary order of elements
 » Don't want to have to scan entire msg to determine if all needed info is present.
 » Negative added value from allowing arbitrary order.
 - Efficiency
 » Linked list inefficient for fixed length items
 • 1 octet value requires 3 octets of bandwidth
 » Length field good form for variable length items
 • Size limited to 127 octets
 • MSB used as "more elements" bit.
 • To short for some variable length items required
 - Security algorithm dependent information.
 » Boolean elements require 3 octets to represent.
 - Redundant information contained in encoding scheme
 » EP bit
 » Element Code
Proposed improved encoding

- The contents of each frame type are invariant.
 - Uniquely specified by header "type" fields.
 - One purpose of a standard is to create interoperability.
 - Fields within Frames are standardized, they do not "come and go as they please".
 - Therefore the EP bit in the header is redundant and unnecessary - it is removed.

- Disallow arbitrary ordering of fields.
 - Standardize order of fields in frames.
 - When possible, place fixed length fields first.
 » Fixed length fields are octet multiples in size and use only the bandwidth required by the information contained.
 - Place variable length fields after fixed length fields.
 » All variable length fields become
 » All lengths in octet multiples.
 » Use length field appropriate for maximum length of information.

Proposed improved encoding

- Element code and link fields are not needed for fixed length information fields.
 - Elimination improves bandwidth utilization
 » Single octet value goes from 3 octets -> one octet storage

- "Element code" not needed for variable length fields
 - Presence of fields determined by frame type.

- Length field needed for variable length fields
 - Old link field to small.
 » 127 octets
 - Increase to 2 octet length field.
 » some variable length items are defined to have a maximum length
 » in those cases, use an appropriate length field size.
Proposed improved encoding

- Boolean indicators should be either a bit, or a specific value as appropriate.
 - Multiple Boolean bits should be packed into octets when appropriate.

Example detail assuming 94/214a information fields by frame.
CRC

- All frames end with CRC
 - Not shown in examples for brevity

Data frames

- Subtype = Asynchronous Data
- Subtype = CF Up
- Subtype = CF Down
- All three the same:

 Full Header: 24 octets
 MPDU: \(\leq \) MSDU size
 (frag size dependent)
RTS frame

RTS Header: 16 octets

CTS frame

CTS/ACK Header: 10 octets
ACK frame

CTS/ACK Header: 10 octets

CF-ACK frame

CTS/ACK Header: 10 octets
POLL frame

Full Header: 24 octets
SID: 2 octets

Beacon frame

Full Header: 24 octets
Time stamp: 4 octets
Weight: 2 octets
Beacon interval: 1 octet
DTIM period: 1 octet
DTIM count: 1 octet
Channel sync: $2 \rightarrow 2 + 2^{16}$ octets
ESS ID: $1 \rightarrow 1 + 128$ octets
TIM: $(1 \rightarrow 8$ octets) * $(n - 1) + m$
Bcast indicator: bit 0 of 1 octet

- $0 =$ no broadcast indication
- $1 =$ bcast will follow next DTIM
ATIM frame

Full Header: 24 octets

Probe frames

Full Header: 24 octets
Req/Resp: bit 0 of 1 octet
0 = request
1 = response

- Subsequent octets dependent on req/resp Boolean...
Probe frames

- Request:
 - no additional octets.

- Response:
 Time stamp: 4 octets
 Weight: 2 octets
 Beacon interval: 1 octet
 DTIM period: 1 octet
 DTIM count: 1 octet
 Channel sync: $2 \rightarrow 2+2^{16}$ octets
 ESS ID: $1 \rightarrow 1+128$ octets

Association frames

Full Header: 24 octets
Req/Resp: bit 0 of 1 octet
 0 = request
 1 = response

- Request:
 Privacy Alg: 2 octets

- Response:
 Status value: 1 octet
 0 = successful
 >0 = error code
 If status value = successful
 SID: 2 octets
Reassociation frames

Full Header: 24 octets

- Req/Resp: bit 0 of 1 octet
 0 = request
 1 = response

- Request:
 Curr AP addr: 6 octets
 Privacy Alg: 2 octets

- Response:
 Status value: 1 octet
 0 = successful
 >0 = error code
 If status value = successful
 SID: 2 octets

Disassociation frame

Full Header: 24 octets

Presentation

Page 11
Privacy frames

- Transaction sequence = 1:

 Full Header: 24 octets
 Trans seq #: 1 octet
 1 = first msg in sequence
 # Algs: 1 octet
 Alg # list: # Algs * 2 octets

Privacy frames

- Transaction sequence = 2:

 Full Header: 24 octets
 Trans seq #: 1 octet
 2 = second msg in sequence
 Status value: 1 octet
 0 = successful
 >0 = error code
 If status value = successful
 Privacy alg #: 2 octets
Authentication frames

• Transaction sequence = 1:

Full Header: 24 octets
Trans seq #: 1 octet
 1 = first msg in auth sequence
Algs: 1 octet
Alg list: # Algs * 2 octets

Authentication frames

• Transaction sequence = 2:

Full Header: 24 octets
Trans seq #: 1 octet
 2 = second msg in auth sequence
Status value: 1 octet
 0 = successful
 >0 = error code
If status value = successful
Auth alg #: 2 octets
Authentication frames

• Transaction sequence = 3:

Full Header: 24 octets
Trans seq #: 1 octet
3 = third msg in auth sequence
Challenge(s1,s2): 2 -> 2^16 octets

• Transaction sequence = 4:

Full Header: 24 octets
Trans seq #: 1 octet
4 = fourth msg in auth sequence
Ch. Resp (S2, S1): 2 -> 2^16 octet
Challenge (S2, S1): 2 -> 2^16 octets
Authentication contents

- Transaction sequence = 5:

 Full Header: 24 octets
 Trans seq #: 1 octet

 5 = fifth msg in auth sequence

 Ch_Result (S1, S2): 2 -> 2+2^16 octets
 Ch_Response (S1, S2): 2 -> 2+2^16 octets

Authentication contents

- Transaction sequence = 6:

 Full Header: 24 octets
 Trans seq #: 1 octet

 6 = sixth msg in auth sequence

 Ch_Result(S2, S1): 2 -> 2+2^16 octets
Motion:

- That the proposed encodings of frame contents as described in in 94/215 be adopted and that the draft be updated to reflect this.