Tx-Power Control support in the MAC IEEE P802.11-94/259

Transmit Power control Provisions in the MAC

Wim Diepstraten

Tx-Power Control support in the MAC

IEEE P802.11-94/259

Why Tx-Power Control:

- · The Wireless Medium is a scarce resource:
 - Only limited bandwidth available per a given Three dimensional area.
 - Medium must be reused as much as possible.
 - Speed increase will limit the number of useable orthogonal channels also in future bands
- · In practice (loaded) systems will be interference limited rather then noise limited.
 - Co-Channel interference is the limiting factor.
- Reducing the Tx-Power to the "Needed Level" will significantly reduce the co-channel interference level generated.
 - This will increase the available bandwidth and so throughput.

Tx-Power Control support in the MAC IEEE P802.11-94/259

Prior work:

- · Previous proposals indicate huge benefits:
 - Doc 92/76: "The potential of Dynamic Power Control"
 - Shows simulation results of Multiple networks with and without Tx-Power Control.
 - » Significant medium re-use potential between a factor 2 and 8 was demonstrated (92/76).
 - Doc 94/59: "Protocol elements needed for Tx-Power Control"
- Purpose is Medium re-use efficiency improvement, not a Power consumption saving.
- The current Phy's specify multiple Tx-Level settings associated with a related CCA sensitivity threshold.

Tx-Power Control support in the MAC IEEE P802.11-94/259

Approach:

- · Use a transmit level that is suitable to achieve the required SIR at the receiver.
 - Do not transmit more then "Needed".
 - This does NOt mean; "Lower power so that reception is at the minimum sensitivity level'
- · Transmitter needs to know the average attenuation to a given destination, to make an informed decision on the Tx-Power Level needed.
- If a lower Tx-Level is needed, then this will reduce the interference level in the surroundings.
 - This means that we can also reduce the "Defer area".
- · The Transmit level can dynamically be REDUCED from its nominal specified level.

Tx-Power Control support in the MAC IEEE P802.11-94/259

What is the basic mechanism:

- A mechanism is needed to measure the attenuation between transmitter and remote receiver.
 - Tx knows (controls) its own Tx-Level.
 - Rx to put measured RSSI in the returning response (CTS or Ack).
 - Tx can calculate the experienced attenuation.
 - This knowledge can be maintained per applicable destination.
- · A Tx-based algorithm can calculate a more appropriate Tx-Level.
- If Tx-Level is reduced, then also the "Defer Threshold" can be made less sensitive.
 - Result: Lower Tx-Level then less stations to defer for, resulting in a higher throughput per unit area.

Tx-Power Control support in the MAC IEEE P802.11-94/259

Reduce Power, Increase Throughput:

- · Transmitters control their Power level from the nominal level DOWN.
- Interferers can be closer, so Defer threshold can be less sensitive.

Tx-Power Control support in the MAC IEEE P802.11-84/258

Minimum MAC Functions needed:

- MAC to specify a RSSI field in the CTS and Ack frame.
 - Specify 8 bit field with 1 dBm resolution.
 - Note that this does not imply a PHY accuracy, but just a range and resolution that the MAC can signal.
- MAC needs to be able to adjust the Tx-Level per
- MAC needs to be able to modify the CCA-Threshold prior to each access attempt.
- The Tx-Level Control algorithm does not need to be specified.
 - Only the mechanism to acquire the necessary information.
 - And the Phy Control mechanism.

Tx-Power Control support in the MAC

IEEE P802.11-94/259

Gather attenuation information:

- · Transmitter can determine the attenuation.
 - It knows its own outut power, and receives the RSSI in the $\mbox{\sc Ack}.$
 - The transmitter can adjust its Transmit Power for subsequent transmissions to that same destination.
- Phy needs to deliver RSSI type information anyway.

Tx-Power Control support in the MAC IEEE P802.11-94/259

What is needed in the MAC Standard:

- Assumption: Include the minimum requirement in the MAC to allow the Attenuation calculation.
- · Level-1 provisions:
- Specify a fixed field in the CTS and Ack frame.
 - 8 bits field, assume 1 dB resolution.
 - Additional spare 8 bits available if we want word bounded fields (could contain "Background Level' or a Quality indication).

Tx-Power Control support in the MAC IEEE P802,11-84/259

Level-2 Provisions:

- · Level-2 provisions:
- Specify a way to allow Phy parameter control independent of a Tx activity which can be issued when the MAC starts monitoring the medium prior to an actual access.
- Add a Transmit_Enable parameter to the Ph-DATA.request(START_OF_ACTIVITY,params), so that parameters can be changed independent of Transmit activity.
- Specify a separate class Ph-DATA.request(Set_Param.params), to allow change of the defer threshold.
- include Tx-Power_level and CCA_threshold parameters in the MAC / PHY interface.
- · State Machine change may not be needed.

Tx-Power Control support in the MAC IEEE P802.11-94/259

Conclusion:

- Lets prepare the frame formats to support the implementation of this important medium sharing function.
 - its use can be optional.
 - This is possible because a mix of stations that do and don't implement Tx-Power Control can work together without any problem.
- A next level of support would be to specify the necessary provisions to control the Tx-Power_Level and CCA_Threshold.
 - Currently no mechanism is available to change the Phy parameters per frame, but independent of transmit activity.

Tx-Power Control support in the MAC IEEE P802.11-94/259

Slide 12

Motion:

To add a fixed field to the CTS and Ack frame to report the received RSSI level, 14/38/13 fails.

Move:

To specify a Transmit_Enable parameter to the basic Ph-DATA.request(START_OF_ACTIVITY,params) parameters, so that they can be changed independent of Transmission activity