IEEE 802.11
Wireless Access Method and Physical Layer Specification

Title: Measurements of the Power Spectral Density of a 16-PPM @1Mbps Optical Signal

Authors: Luis M. V. Moreira, Adriano J. C. Moreira, Rui T. Valadas, A. M. de Oliveira Duarte

Integrated Broadband Communications Group
Dept. of Electronics and Telecommunications
University of Aveiro
3800 AVEIRO
PORTUGAL

Summary

In [1] a transmit spectrum mask was proposed that specifies a -20dB point @ 15 MHz.
In this document we present experimental results on the measurements of the Power Spectral Density (PSD) of the optical signal transmitted by a baseband infrared transmitter, using 16-PPM at 1 Mbps. The presented experimental results are in good agreement with previously presented theoretical results [1] and show that the spectrum bandwidth of practical transmitters is narrower than 15 MHz, but can be higher than 10 MHz.

1. Introduction

In [1], the theoretical PSD of the optical signal generated by a baseband infrared transmitter operating at 2 Mbps (4-PPM) was presented, and a Transmit Spectrum Mask for a conformant transmitter was proposed. In [1], it was proposed that the spectrum bandwidth of the transmitted signal should be narrower than 15 MHz.
In this document, experimental results for the PSD of the optical signal generated by a transmitter operating at 1 Mbps (16-PPM) are presented. Since the transmitted pulse shape is the same for both data rates (1 and 2 Mbps), the resulting PSD is quite similar.

2. Measurement Setup

The experimental results presented above were obtained using the setup depicted in figure 1. The time domain measurements were performed using a fast sampling digital storage oscilloscope. The frequency domain measurements were performed using a spectrum analyser. The transmitted optical signal was generated by a conformant transmitter, using a very simple drive circuit.