November 1994

Analysis of 83 vs. MID
Revision 1.0

David Bagby
Bob O'Hara
Dave Roberts
Advanced Micro Devices
One AMD Place
Sunnyvale CA 94086

Disagreement Surrounds WDS Support

- All believe that WDS is important
- Two solutions: 94/246 vs. MID
- Argument could be characterized as: stability vs. efficiency

Issue with 83

- Problem results in wireless distribution system because 4 addresses are needed to be carried in a data frame: immediate transmitter, immediate receiver, original source, and final destination
- 83 only specified that 3 addresses be carried in a data frame
- Result was that second AP in forwarding sequence could not send ACK for Data frame to first AP

B3 Summary Description

- B3 uses directed addressing for all frames in a transmission "dialog"
- RTS carries return address for CTS, Data carries return address for ACK

MID Summary Description

- MID attempts to remedy situation by making CTS and ACK non-directed
- A token (MID) is used to match a CTS with an RTS and an ACK with Data
- Transmitter "randomly" picks a MID value from 11-bit space (2048 choices)
- MID is included with RTS and Data and returned with CTS and ACK
- MID uses the bits B3 used for sequence number, plus a couple more, and so is also used for MPDU duplicate detection

Common Ground

- There was a lot of concensus reached around B3 functionality
- Alteration of NID to unique address
- FC field definitions
- Uniform 32-bit CRC
- Textual ESSID representation

Submission

Advanced Micro Devices
Problem with MID
- The problem with the MID is the same problem MPDU/D originally had
- Two stations in close proximity can choose the same MID value and frames in a dialog can become mis correlated
- This can lead to errored frames not being retried and dropped

Example of Miscorrelation

MID Answers to Miscorrelation Problem
- It's unlikely
- It's only a problem if the frames are the same size
- Therefore, it's not a problem

"It’s Unlikely..."
- We have an 11-bit token
- MID proponents claim random number means stations are highly unlikely to choose the same token
 - 1 in 2048 chance of choosing any particular value
- MID proponents claim that even if they do, it probably won’t happen twice
 - i.e., probability is 1/(2048)^2 = very small

A Look At “Random” Numbers
- “Random” numbers are generated using an algorithm operating on a seed value
 - Linear Congruential
 - LFSR
- They are “random” at a macroscopic scale (spectral test, etc.) but not at a microscopic scale
- Same seed value always generates same output
- Seed value for next choice is the output of previous choice
- PRNG results in a sequence of numbers

Example PRNG
- A 3-bit linear congruential
 - R(n) = (5n + 3) mod 8
 - RN(n) = R(R(n-1))
- This produces the sequence:
 - 0, 3, 2, 5, 6, 7, 4, 1, 0, 3...
- The last RNG generated is used as the seed to generate the next random number, also known as the state of the generator
- Generators that cycle through all possible states before repeating are called maximal length generators
 - We want this property for a MID for duplicate detection

Advanced Micro Devices
November 1994

PRNG/MID Implications

- Given a particular state value, the PRNG "picks" the next value in sequence with P=1. It picks all other numbers from a set with P=0.
- Note that for the purposes of correlating frames in a dialog, we don't care what the MID value is. 13 is just as good as 1238.
- Note also that a simple counter has the same property as above. A PRNG is just a strange counter.
- Since we don't care what the value of the PRNG output is, a counter is just as good as a PRN.
- The MID might as well be a simple counter!

Stations Can Become "In Sync"

- Even if stations start out (at powerup) with different positions in the "random" sequence, traffic patterns can cause them to reach the same position.
- Once they reach the same position, the probability gets very high that they will collide.
 - One station's position will "cross over" the other station's.
- This becomes much more likely the more stations you have.
- If outbound traffic patterns are similar, then stations will tend to stay in sync for a while.
 - It may take them a long time to reach this point, but it will also take them a long time to get out of it.

Introducing More Randomness

- Use a larger seed
 - E.g., use low order bits of larger seed as PRN
 - Breaks maximal length property
- Generating a new MID for Data/ACK is less than that used for RTS/CTS doesn't help
 - You'll generate the same value!
 - You'll use duplicate detection tags more quickly, leading to problems.
- In general, doing anything breaks duplicate detection needs

Randomness Conclusions

- "Random" numbers aren't as random as you might think.
- They are really no better than a sequence number.
- Once stations become sync'd, the probability is quite high that collisions will occur.
 - Probability of stations becoming sync'd increases greatly with increase in number of stations.
- Trying to change this breaks duplicate detection properties.
 - Maximal length property no longer exists which increases the probability of a duplicate detection failure.

"It's Only A Problem With Frames Of Equal Size..."

- False: It's a problem with all frames that are at the same time.
- AND, frames of equal size are actually very likely.

Problem Window

- The problem occurs when a transmitter waits for a reply and sees what it thinks is a valid response.
- This occurs if a false ACK or CTS is returned within a SIFS after the transmitter stops.
- Different start times are acceptable as long as stop times are within a SIFS of each other.
CCA Doesn't Necessarily Help

Probability of Two Nodes Choosing 576-Byte Frames

Arguments Against 94/248

Efficiency

Probability of STAs Choosing Same Size Is High

MID Conclusions

Arguments Against 94/248

• Efficiency
• Simplicity

Efficiency

• Some say MID Is more efficient than B3
• Using MID results in dramatic reduction in frame header overhead

Frames	B3	MID	Delta
RTS/CTS/Data/ACK | 60 | 48 | -20%
Data/ACK | 34 | 30 | -11.8%

Yes, but this is a meaningless measurement!
Throughput Delta

- The only meaningful measurement is change in throughput.
 - Users don’t care how big the frame headers are!
- AMD created a spreadsheet to calculate throughput based on total dialog exchange parameters (PHY preamble, SIFS/DIFS time, realistic payload sizes, etc).
 - We even figured in the decrease in throughput caused by retries caused by increase in frame error rate caused by more bits being transmitted.
 - This spreadsheet was distributed to the small reflector.

Further Throughput Results

- Largest deltas occur when payload is small.
 - As expected...
- But throughput is bad at this point anyway...
 - Headers and IFS times dominate in any case.
- Expected throughput for B3 at 39-byte payload w/o RTS/CTS is only 284.5 Kbps.
- Using a MID rather than B3 increases throughput to only 293 Kbps.
- Using a MID isn’t going to increase user satisfaction any...

Simplicity

- MID Proponents claim that MID results in easier state machine design.
 - This is true
 - Receiver copies MID unconditionally to the CTS or ACK.
 - But this is putting the cart before the horse.
 - The MID scheme doesn’t work reliably!

Overall Conclusions

- The MID is unreliable.
 - Its proponents admit this but claim that the probability of failure is low.
 - BUT they haven’t put forth the detailed analysis to show this!
 - We’ve shown that the probability can be quite high under reasonable loading conditions and station count.
- Although B3 directed frames result in a small decrease in throughput (<3%), B3 doesn’t rely on probabilistic argument to show that it works.

Throughput Delta Results

<table>
<thead>
<tr>
<th>Payload size</th>
<th>RTS/CTS</th>
<th>MID/B3 Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>585</td>
<td>Y</td>
<td>1.59%</td>
</tr>
<tr>
<td>585</td>
<td>N</td>
<td>0.59%</td>
</tr>
<tr>
<td>39</td>
<td>Y</td>
<td>5.75%</td>
</tr>
<tr>
<td>39</td>
<td>N</td>
<td>2.92%</td>
</tr>
</tbody>
</table>

- 585-byte payload represents 576-byte IP or IPX packet with 9-byte LLC/SNAP.
- 39-byte payload represents 30-byte minimum size IPX packet with 9-byte LLC/SNAP.

* Don’t do this! But we already knew that.