IEEE 802.11
SIFS, PIFS, DIFS, and Slot Times Defined

Presented By: Chris Zegelin
Symbol Technologies
2145 Hamilton Ave.
San Jose, CA. 95125
Tel: (408)369-2667
Email: chrisz@psd.symbol.com

Dean Kawaguchi
Symbol Technologies, Inc.
2145 Hamilton Ave
San Jose, CA. 95125
Telephone: (408)369-2629
FAX: (408)369-2740
email: DeanK@psd.symbol.com

Abstract: This paper attempts to end the confusion that exists between the times specified in the PHY sections of the document and how they are applied to the MAC protocol.

Introduction: The PHY timings that currently exist in the draft standard do not adequately indicate how they are applied to the basic access mechanism. For example, the FH PHY sections provide a time for turn around, but do not positively indicate that the time is related to the SIFS time for the FH PHY. It turns out that clarification is needed, not a change. The current MIB variables are still valid, but some may become redundant. Two important variables, the min and max PHY implementation portion of the SIFS delay are implementation dependent.

Motion Moved: To unify the timings provided in the PHY sections of the document with those used by the MAC, by adding the new text from 95/81.

New text added to the end of section 5.2.4

Each PHY specifies three numbers; the SIFS interval (SIFSmx, SIFSmin), and the Slot Time. Both numbers are referenced to the ‘air’ interface. The PHY MIB also contains several implementation dependent variables. These MIB variables adjust the timing allocations between the MAC and PHY consistent with a fixed SIFS interval and Slot Time. The Slot time is used to provide the PIFS and DIFS intervals using the following equation:

\[\text{PIFS} = \frac{1}{2} \text{DIFS} = \text{Slot Time} \]

Add a new MIB variable “aSIFS” where appropriate in the draft.

SIFS ATTRIBUTE
WITH APPROPRIATE SYNTAX
 Integer;
BEHAVIOR DEFINED AS
 "The time in nanoseconds from a time mark to begin transmitting the first pre-amble bit out on the air";
REGISTERED AS
 \{ iso(1) member-body(2) us(840) ieee802dot11(xxxx) PHY(1) attribute(7) SIFSmin(??) \};
 \{ iso(1) member-body(2) us(840) ieee802dot11(xxxx) PHY(1) attribute(7) SIFSmax(??) \};

For FH: Add new text for section 10.6.13.
10.6.13 SIFS Time

The time for a conformant FH PHY unit to place the start of the first bit on the air, measured from the end of the last bit of a received packet on the air, or a slot boundary, shall be at least 18μS and no more than 20μS usec. At the end of this interval, the rf carrier shall be within 1 dB of its final transmit power level, and within the described modulation specifications. The air interface is defined as the measurement point.

For FH: Add two new rows to table 10-17.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFSmin</td>
<td>18 usec</td>
<td>Static</td>
<td>Identical for all FH PHYs</td>
</tr>
<tr>
<td>SIFSmax</td>
<td>20 usec</td>
<td>Static</td>
<td>Identical for all FH PHYs</td>
</tr>
</tbody>
</table>

For DS: Add table in section 11.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFSmin</td>
<td>5 usec</td>
<td>Static</td>
<td>Identical for all DS PHYs</td>
</tr>
<tr>
<td>SIFSmax</td>
<td>10 usec</td>
<td>Static</td>
<td>Identical for all DS PHYs</td>
</tr>
<tr>
<td>Slot_Time</td>
<td>20 usec</td>
<td>Static</td>
<td>Identical for all DS PHYs</td>
</tr>
</tbody>
</table>

For IR: Add two new rows to the table in section 12.4.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFSmin</td>
<td>TDB usec</td>
<td>Static</td>
<td>Identical for all IR PHYs</td>
</tr>
<tr>
<td>SIFSmax</td>
<td>TDB usec</td>
<td>Static</td>
<td>Identical for all IR PHYs</td>
</tr>
<tr>
<td>Slot_Time</td>
<td>TDB usec</td>
<td>Static</td>
<td>Identical for all IR PHYs</td>
</tr>
</tbody>
</table>