Inter Access Point Protocol

Prepared by:
Aironet & Lucent Technologies

Presented By: Wim Diepstraten
Mike Trompower

Agenda

- Introduction
- Goals
- History
- Requirements
- Architecture
- Specifications
- Conclusion
Introduction

- Wireless Networks introduce new concepts
 - Medium is unbounded, but range is limited.
 - End nodes can be mobile.
- IEEE 802.11 is developing a Wireless LAN standard.
 - Standard is in final stage, expected to go to Sponsor Ballot.
 - 802.11 defines MAC and PHY specifications, “Air Interface” only.
 - Provides basic primitives to support mobility.
- IEEE 802.11 extends its coverage beyond the range of its PHY through a Distribution System.
 - Distribution System connects multiple AP to form an ESS.
 - However, the Distribution System is not specified.
 - This represents an interoperability issue at the system level.

IEEE 802.11 architecture

- IEEE 802.11 defines the “over the air” protocol.
IEEE 802.11 architecture

- IEEE 802.11 defines the "over the air" protocol.
- Range extension through use of a Distribution System.

- AP to AP protocol is not defined by 802.11.
• A standard protocol for Access Point communication.

• A particular Distribution System Medium.
 - based on existing LAN standards
Goals of this initiative

• Specify the "missing link" for Wireless LAN systems interoperability.
 - to support mobility of end nodes
• Enable multivendor Distribution Systems.
 - based on existing network standards
 - by specifying IAPP, the protocol between Access Points
• Aironet, Digital Ocean and Lucent Technologies have developed an initial specification.
 - It is published as an "open voluntary standard".
 - To solicit feedback by interested parties

History

• IEEE 802.11 started work in 1990.
 - Its PAR specifies support for range extension and mobility.
 - 802.11 decided early on not to specify the Distribution System.
 » it is beyond IEEE 802 MAC level authority
 » Distribution System requires Network and Transport layer functionality
 - 802.11 specifies the services the Distribution System must provide
• There were a number of attempts to specify interoperability functions on the Distribution System.
 - The term IAPP was introduced in IEEE P802.11-94/17.
 - IEEE P802.11-95/188 by Michael Fischer proposed a limited Distribution System by introduction of the MESS.
• Aironet, Digital Ocean and Lucent Technologies provide an initial specification of the IAPP.
General IAPP requirements

- Build upon specified 802.11 functionality.
- Use existing networks to serve as the Distribution System Medium.
 - Existing 802 wired Networks
 - 802.11 Wireless LANs
- Support a wide range of Network transfer protocols.
 - Support MAC level Bridge based Data Link level implementations
 - Support Router based Network layer implementations
 » Allow multi-segment IAPP
 » Not intended to solve addressing issues for Network layer mobility.
- Allow for different network Management topologies.
- Provide mechanisms to allow APs to communicate with each other.
- The IAPP should be flexible and extendable.
 - allow proprietary extensions

Architecture background

- The 802.11 architecture is designed to allow diverse Distribution System implementations:
 - The DS may be created from different technologies including but not limited to current 802.x wired LANs.
 - It is not constrained to either Data Link or Network layer.
 - Its addressing space can be separate from the addressing space used in the DS or integrated wired LAN.
- This IAPP initiative focuses on a set of solutions representing a typical case.
 - Distribution Systems based on existing 802.x wired LANs.
 » The Distribution Medium (DM) can be an existing LAN with stations connected.
 » With 802.11 and DM using the same MAC level address space.
IAPP Architecture

- IAPP defines a communication mechanism between APs.
 - to allow for coordination between APs
 - to exchange channel or hop sequence information
- IAPP allows AP MAC Management entities to communicate.
 - to enable a station to disassociate from the “Old AP”
 - to redirect the Distribution System filtering functions
- Two transfer protocols will be implemented.
 - UDP/IP
 » used whenever an IP address is present in the AP
 - 802.2 Sub-Network Access Protocol (SNAP)
 » for simpler systems when no IP Address is present

- Distribution System Medium can be built from existing networks
 - including 802.11 wireless LANs
General IAPP Message Format

- Protocol Header: SNAP or UDP/IP protocol Header.
- Ver#: IAPP Version number.
- PDU-Type: Identifies Specific PDU.
- n * PDU element: PDU data element fields. Following 802.11 element format
 - Element-ID: Element identification
 - Length: Length of element data field in octets.
 - Data: Data of the element.

Messages can be specifically addressed to one AP, or group addressed to all APs.

Basic IAPP protocol functions

- IAPP Announce Protocol
 - to facilitate AP awareness and coordination
 - to support the formation of Wireless Distribution Systems

- IAPP Handover Protocol
 - to extend the 802.11 Re-Association MAC management function across the distribution system
IAPP Announce Protocol

- IAPP Announce protocol:
 - Inform other APs and/or network management functions that a new AP has become active.
 - Inform other APs and/or network management functions of the continued operation of that AP.
 - Allow APs to communicate their configuration.
 - Allow for network Management function to provide AP coordination.

- Associated PDU Types:
 » Announce.Request
 » Announce.Response

- Supports centralized or distributed AP coordination, and allows autonomous operation in uncoordinated environments.
- Provides a means for Wireless APs to “Register” with other APs.
 - enables creation of a Wireless Distribution System

AP management topologies

- Topologies supported:
 - Uncoordinated APs
 - Centralized AP Management
 - Distributed AP Management
- Provides for “Management level AP awareness”
 - Needed to configure wireless Distribution Systems.
 - This is not covered by 802.11.
Uncoordinated APs

- New AP generates Announce.response.
 - sent as a general Broadcast
- Allows AP to identify itself and its operational status.

Centralized AP Management

- Announce.request generated by new AP.
 - AP manager will respond (with Master bit set).
- AP manager can query AP’s by sending Announce.requests.
 - with “Response desired” enabled

New AP / updated AP
ANNOUNCE response to distribution system

All APs / AP Manager

Uncoordinated AP

New AP announces to AP manager

AP Manager query of all APs
Distributed Control

- New AP generates Announce.request
 - with "Response desired" enabled.
- Other APs send Announce.response
- New AP generates Announce.response
 - Indicating its operational status.
- APs can generate Announce.response messages periodically as an "Alive indication".

IAPP Handover Protocol

- IAPP Handover Protocol:
 - Inform the "old AP" that a station has associated with a new AP.
 - To release resources assigned to that station by the old AP.
 - To allow optional frame forwarding of buffered frames,
 - or discard them.
 - Update filter tables of intermediate MAC layer Bridges.
 - By using the "Mobile Station Source address" as the SA of the handover request message.
- Associated PDU Types:
 - Handover.Request
Handover procedure

- Relationship between 802.11 reassociation and IAPP handover.

PDU Elements

- ESSID as in 802.11
- BSSID as in 802.11
- Old BSSID as in 802.11
- MS-Address Mobile Station address
- IAPP capability/Status
- Announce interval in Kusec
- Handover Timeout in Kusec
- PHY type identify 802.11 PHY
- Regulatory Domain as in 802.11 MIB
- Channel PHY dependent
- Beacon Interval as in 802.11
- OUI Company identifier Precedes block of proprietary elements.
 - Proprietary elements Following OUI Company ID only.
Element Usage

- Element use per PDU type:
 - fixed elements are specified
 - other elements are optional
- Proprietary elements are allowed.
 - receivers ignore elements they don’t understand
- OUI Company ID precedes block of proprietary elements.
 - This prevents Element ID conflicts.
 » (OUI, Element ID) tuple will be unique

Conclusion

- IAPP provides the “missing link” in Wireless networking.
 - interoperability between multiple vendor AP implementations
- IAPP is compatible with IEEE 802.11.
 - it builds upon the 802.11 functionality
- IAPP enables a multitude of AP management schemes.
 - with support across Bridges and Routers
- IAPP is scalable for the future.
 - element structure allows for migratable extensions
 - proprietary extensions are allowed
How to continue

• Short term
 - Comments on the IAPP are solicited from all interested parties.
 - Specification is maintained by Aironet and Lucent Technologies.
 - New versions are distributed via:
 » IEEE Email reflector
 » Web sites
 - Aironet, Digital Ocean and Lucent Technologies agree to implement
 IAPP in their 802.11 products

• Long term: Consensus of the meeting:
 - A lot of interest to move forward with this proposal.
 - Proposal to present it to 802.1 Technical plenary to see where it
 should belong.
 » Do this in November, to prevent impact on 802.11 Sponsor ballot
 » Would be very useful as informative annex to 802.11, but not now.