High Rate DS PHY

IEEE 802.11 High data rate PHY extensions

- Introduction
- Definition
- Technical Approach
- Performance Predictions

Submission: High Rate DS PHY

- 1

Carl Andren, Harris

March 1997

doc: IEEE P802.11-97/25

Tradeoffs

- The 802.11 PHY group has identified a need for higher data rates
- For higher data rates, we need a new DSSS waveform that has:
 - » good power efficiency (range)
 - » "10 dB PG", i.e. will pass FCC CW jammer test
 - » acceptable multipath performance
 - » Low to moderate amplitude modulation
 - » low implementation cost
- It would be desirable to use the existing preamble and PLCP header, so it would be interoperable with lower rate stations.

Submission: High Rate DS PHY

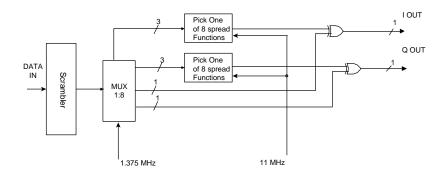
2

Carl Andren, Harris

Modulation Options

- There are several options for increasing the data rate
 - » Multiple bits per symbol
 - M-Ary Orthagonal Keying
 - Cyclic Code Shift Keying
 - M-QAM with 11 MCps spreading
 - » M parallel carriers
 - Orthogonal Frequency Division Multiplex (OFDM)
 - M parallel orthogonal Spread signals
 - » Others
- Higher spread rate not considered, it reduces number of available channels too much

Submission: High Rate DS PHY


3

Carl Andren, Harris

March 1997

doc: IEEE P802 11-97/25

MOK Modulation Approach for 11 MBps

Data Rate = 8 bits/symbol * 1.375 MSps = 11 MBps

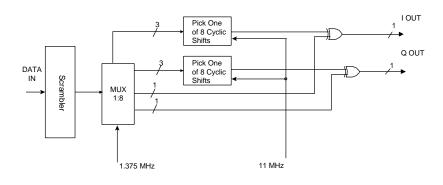
Submission: High Rate DS PHY

4

Carl Andren, Harris

March 1997

doc: IEEE P802.11-97/25


MOK properties

- This modulation is most power efficient
- The spectrum is like the 802.11 DSSS
- Multipath performance is nominal for the SNR
- Requires coherent processing
- Moderate implementation complexity

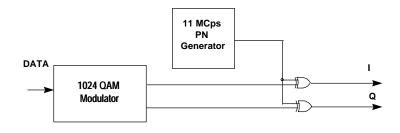
Submission: High Rate DS PHY 5 Carl Andren, Harris

March 1997 doc: IEEE P802.11-97/2

CCSK Modulation Approach for 11 MBps

Data Rate = 8 bits/symbol * 1.375 MSps = 11 MBps

Submission: High Rate DS PHY 6 Carl Andren, Harris


CCSK properties

- The CCSK modulation symbols are not orthogonal, so they do not achieve as high an efficiency as MOK.
- The CCSK symbols are susceptible to long range multipath.
- Requires the least hardware to implement.

Submission: High Rate DS PHY 7 Carl Andren, Harris

March 1997 doc: IEEE P802.11-97/25

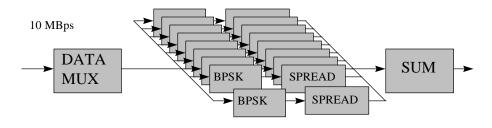
QAM approach

10 bits/symbol * 1 MSps = 10 MBps

Submission: High Rate DS PHY 8 Carl Andren, Harris

QAM properties

- 1024 QAM is very sensitive to distortion and would need an equalizer to even be considered.
- Does not achieve a good Eb/N0


Submission: High Rate DS PHY **9** Carl Andren, Harris

March 1997

doc: IEEE P802 11-97/25

Parallel Spread Channels Approach

Orthogonal Code Division Multiplex (OCDM)

16 SPREAD CHANNELS AT 0.68 kBps = 10 MBps

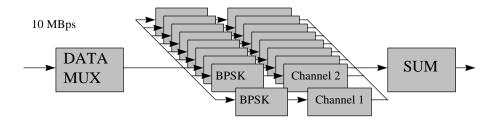
Submission: High Rate DS PHY

10

Carl Andren, Harris

OCDM Properties

- Multiple summed orthogonal signals produce a high degree of incidental amplitude modulation.
- Good Eb/N0 (power efficiency)
- Same spectrum as 802.11 currently
- Moderate implementation complexity


Submission: High Rate DS PHY 11 Carl Andren, Harris

March 1997

doc: IEEE P802.11-97/25

OFDM Approach

Orthogonal Frequency Division Multiplex (OFDM)

16 FREQUENCY CHANNELS AT 0.68 kBps * 1 bit/channel = 10 MBps

Submission: High Rate DS PHY 12 Carl Andren, Harris

OFDM Properties

- Best use of the spectrum with flat characteristic.
- Large degree of amplitude modulation.
 - » Means that a very linear power amplifier is required
- Complex processing (FFT)
 - » More cost and power consumption
- Good spectrum and power efficiency in waveform
- Can use differential, non-coherent processing

Submission: High Rate DS PHY 13 Carl Andren, Harris

March 1997 doc: IEEE P802.11-97/25

Trade Table

Scheme	MOK	CCSK	QAM	OCDM	OFDM
Eb/N0	1	2	5	2	2
Multipath	2	4	3	1	1
Jamming	1	1	4	1	1
Spectrum	2	2	3	2	1
AM Mod	2	2	3	4	4
Range	1	2	5	2	2
Complexity	1	1	3	2	5
total weight	10	13	26	14	16

Lower is better

Submission: High Rate DS PHY 14 Carl Andren, Harris

Standard Definition Issues

- Lack of 10+ MBps Physical Layer standard
 - Provide backwards compatibility to IEEE 802.11 at 1&2 MBps
- Limited bandwidth available in the ISM bands
 - Maximize bits/Hz
 - Need at least 3 channels
- Meet FCC requirements for ISM bands
 - Preliminary review is encouraging
 - FCC is comfortable with any solution that passes CW test
- Interoperate with 1&2 MBps equipment

Submission: High Rate DS PHY 15 Carl Andren, Harris

March 1997 doc: IEEE P802.11-97/25

High Rate 802.11 Features

- Provide 10+ MBps wireless LAN data rates while maintaining interoperability with 1 & 2 MBps WLANs
- Increase data rate by at least 5x with no increase in the transmit bandwidth requirement
- Rate switching during packets is supported already

Submission: High Rate DS PHY 16 Carl Andren, Harris

Modifications to Standard

- To get high rate use more complex modulation at same spread rate.
- Use standard PLCP preamble and header to establish carrier phase and frequency lock.

Submission: High Rate DS PHY 17 Carl Andren, Harris