March 1998

Doc:IEEE P802.11-98/72a

Summary of Merged Proposal

Hitoshi Takanashi, Masahiro Morikura and Richard van Nee

March. 1998 NTT, Lucent

Submission Page 1 NTT and Lucent

March 1998

Doc:IEEE P802.11-98/72a

Merged Proposal

- -Former proposals by Lucent Technologies and NTT were merged into one proposal that is described here.
- -A complete specification of the merged proposal is described in document 98/071r1.

Submission Page 2 NTT and Lucent

Doc.: IEEE P802.11-98/72a

March 1998

Doc:IEEE P802.11-98/72a

Summary

Advantages

- -Robust against delay spread
- -Low packet error rate with interleving+FEC
- -High capacity (up to 30 Mbit/s * 5 carriers in 100 MHz)
- -Insensitive to clock and carrier frequency accuracy

Implementation issues

- -Less than 200 k Gates
- -Low power consumption
- -Conventional HPA with appropriate backoff

Submission Page 3 NTT and Lucent

March 1998

Doc:IEEE P802.11-98/72a

Data Rates and Coding Rates

	coding rate	3/4	1/2
16 QAM	Data Rate	30 Mbit/s	20 Mbit/s
	Signal Field	10 10	10 01
DQPSK	Data Rate	15 Mbit/s	10 Mbit/s
	Signal Field	01 10	01 01
DBPSK	Data Rate 5 Mbit/s		
	Signal Field		00 01

Table 77, Contents of Signal Field

Submission Page 4 NTT and Lucent

March 1998

Doc:IEEE P802.11-98/72a

OFDM Parameters

N_s : Number of subcarriers	48	
T_s : Symbol interval	4.8 μs	
T: IFFT/FFT period	$4.042 \mu s (T_s \cdot 64/76)$	
T_G : Guard interval	758 ns (T_s-T)	
T_{prefix} : Pre-guard interval	758 ns (T_s-T)	
$T_{postfix}$: Post-guard interval	101 ns (0.025 <i>T</i>)	
b : Roll-off factor	0.025	

Table 87, OFDM parameters

Submission Page 5 NTT and Lucent

March 1998

Doc:IEEE P802.11-98/72a

Transmitting Power

Frequency Band	Maximum Output Power	
	with up to 6 dBi antenna gain	
5.15 - 5.25 GHz	30 mW (2.5 mW/MHz)	
5.25 - 5.35 GHz	150 mW (12.5 mW/MHz)	
5.725 - 5.825 GHz		

Table 88, Transmit Power Levels

Submission Page 6 NTT and Lucent

March 1998 Doc:IEEE P802.11-98/72a

Training Symbols

Figure 108, Training Structure

Submission Page 7 NTT and Lucent

March 1998

Doc:IEEE P802.11-98/72a

PLCP Frame Format

PLCP preamble and header are transmitted using the 20 Mbit/s DQPSK-OFDM modulation

Submission Page 8 NTT and Lucent

March 1998

Doc:IEEE P802.11-98/72a

Allocation of Subcarriers

- The center carrier interfered by the DC offset is not used.
- Three of the subcarriers are dedicated to pilot signals in order to make the coherent detection robust against frequency offsets and phase noise when 16-QAM is selected. These pilot signals are put in subcarrier #3, 26 and 47 with values of {1, 1, -1} respectively. The data supposed to be sent on these subcarriers are stolen and punctured.

Submission

Page 9

NTT and Lucent

March 1998

Doc:IEEE P802.11-98/72a

Frequency Allocation

