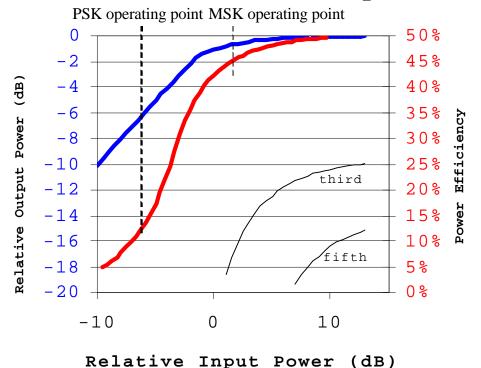

Proposal for 2.4-GHz PHY May 1998 Update

John H. Cafarella MICRILOR, Inc.

Key Features

Simplified Matrix

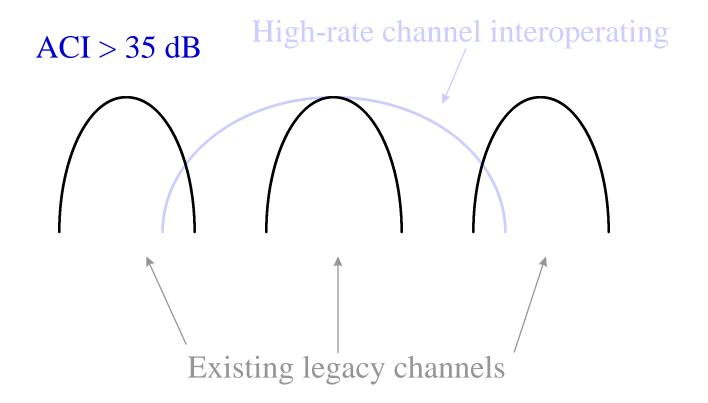

	Lucent	Harris	Micrilor
Interference Tolerance	Less Weak	Weak	Strong
Multipath Tolerance	Good	Weak	Good
Basic Data Rate	8 Mbps	11 Mbps	10 Mbps
Chip Complexity	60K gates	70K gates	40K gates
Amplifier Backoff	Yes	Yes	No
Freq/Code Channels	3/1	3/1	2/48
Higher Rate (good channel)	10 Mbps	None	18 Mbps
Interoperate Legacy DSSS?	Optional*	Optional*	Yes

Raytheon same as Harris except <u>no Amplifier Backoff</u>

^{*} must choose between high throughput or backward interoperability

Power Amplifier Efficiency

(seems mundane, but does not improve with time)

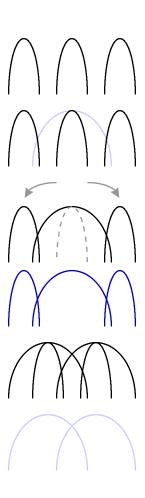


- MSK allows operation to power-amp 1-dB compression
- PA efficiency greatly improves
- **D11-97/118** describes low-cost MSK implementation

Interoperability

- Dual-Mode transceiver (re-using circuitry)
 - High-rate and Legacy DSSS PHY
 - Independent Operation with common CCA
 - Coordinate via RTS/CTS exchanges
- Single PHY Solution
 - No need for alternate PHY Headers
 - Does not sacrifice high-rate potential

Three-Channel Operation



Migration Possibilities

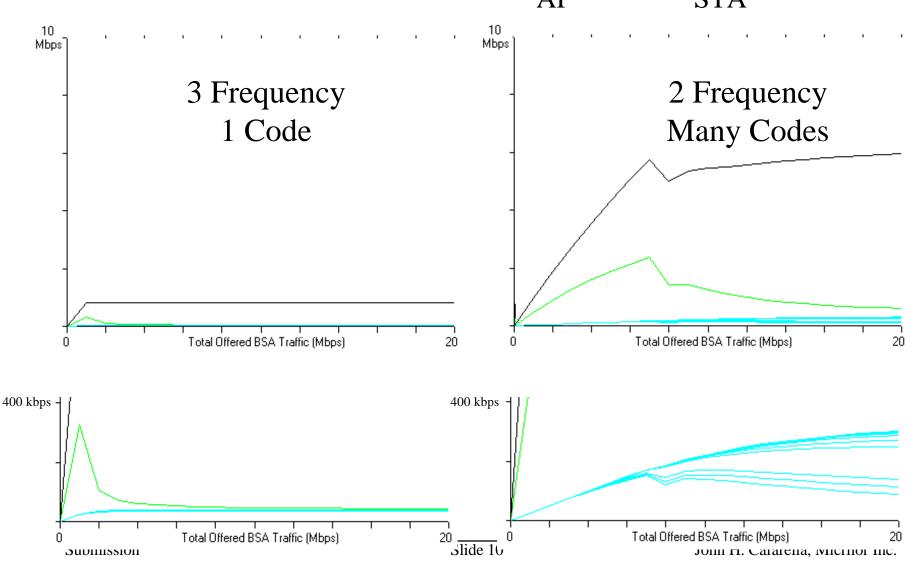
- Begin with 3 Legacy Channels
- Introduce High-Rate Channel;
 Interoperate with Mid. Legacy
 Channel
- Move Legacy Units from High-Rate Channel
- Keep Three-Channel Deployment

or

- Two High-Speed/Legacy Channels
- Eventually Two High-Speed Channels

Channelization

- Many PN Code Channels
 - Especially for BSA Isolation
- Two 10-/18-Mbps Frequency Channels
- Three Half-Bandwidth Channels if Desired


Channelization Issue

- Three-Frequency/One-Code Deployment
 - Re-use of frequencies demands sharing capacity
- Two-Frequency/Many-Code Deployment
 - Re-use of frequencies can be shared or independent
- BSA Isolation Critical for High System Capacity

lacktriangle

lacktriangle

$\frac{\text{May 1998}}{12 \text{ Same-Frequency BSAS}} \frac{12 \text{ Same-Frequency BSAS}}{20 \text{ STAS/BSA}} \lambda_{AP} = 20 \lambda_{STA}$

May 1998

doc.: IEEE 802.11-98/117

12 Same-Frequency BSAs 20 STAs/BSA λ AP = 200 λ STA

10 _ Mbps Mbps 3 Frequency 1 Code Total Offered BSA Traffic (Mbps) 20 Total Offered BSA Traffic (Mbps) 20 400 kbps Total Offered BSA Traffic (Mbps) Total Offered BSA Traffic (Mbps) Slide 1 Submission

Conclusion

- ROBUST IN MULTIPATH & INTERFERENCE
- SIMPLE
- HIGH DATA RATES: 10- & 18 Mbps
- INTEROPERABLE
- CHANNELIZATION FOR HIGH SYSTEM CAPACITY
- THROUGHPUT