May 1998

doc.: IEEE 802.11-98/201

Submission to IEEE P802.11 Wireless LANs

QPSK,OQPSK, and MSK Spectral Regrowth and PA Efficiency

Rod Nelson Keith Baldwin Jim Paviol Mark Webster

Harris Semiconductor mwebster@harris.com

Submission

Slide 1

Nelson & Baldwin, Harris Semiconductor

May 1998

doc.: IEEE 802.11-98/201

- QPSK, OQPSK, and MSK were evaluated for spectral regrowth and power amplifier efficiency.
- Each waveform was synthesized at baseband using a dual channel arbitrary waveform generator and then upconverted using a quadrature modulator to the ISM band.
- The resulting signal was passed through a Class AB solid state power amplifier (SSPA).
- The power consumption of the SSPA was measured at various input drive levels and efficiency computed.
- Power spectrum for each waveform was then plotted at the 1 dB compression point and with the output saturated.

Submission

Slide 2

Nelson & Baldwin, Harris Semiconductor

May 1998

doc.: IEEE 802.11-98/201

SSPA Characterization

May 1998

Submission

doc.: IEEE 802.11-98/201

QPSK Compression / Efficiency

Submission

Slide 4

Nelson & Baldwin, Harris Semiconductor

doc.: IEEE 802.11-98/201

May 1998 doc.: IEEE 802.11-98/201

QPSK Spectrum (11 Mchips/s)

Submission Slide 5 Nelson & Baldwin, Harris Semiconductor

May 1998 doc.: IEEE 802.11-98/201

OQPSK Compression / Efficiency

Submission Slide 6 Nelson & Baldwin, Harris Semiconductor

May 1998 doc.: IEEE 802.11-98/201

OQPSK Spectrum (11 Mchips/s)

Submission Slide 7 Nelson & Baldwin, Harris Semiconductor

May 1998 doc.: IEEE 802.11-98/201

MSK Compression / Efficiency

Submission Slide 8 Nelson & Baldwin, Harris Semiconductor

doc.: IEEE 802.11-98/201

May 1998 doc.: IEEE 802.11-98/201

MSK Spectrum (11 Mchips/s)

Submission Slide 9 Nelson & Baldwin, Harris Semiconductor

May 1998 doc.: IEEE 802.11-98/201

Summary

(dBm)	(%)	(dBm)	(dB)	(%)
			(GD)	(70)
24.5	24.0	22.9	1.6	18.0
24.7	24.0	22.4	2.3	17.0
24.8	24.0	21.7	3.1	15.0
	24.7	24.7 24.0	24.7 24.0 22.4	24.7 24.0 22.4 2.3

- •Based on lab data, QPSK must be operated at 1.5 2.0 dB more OBO than OQPSK.
- •For an output power of 24.5 dBm, OQPSK requires about 1.2 W (24% eff) and QPSK would require about 1.6 W (18% eff).
- •This is a 33% increase in power required for the PA. Or about 80 ma at 5VDC.

Nelson & Baldwin, Harris Semiconductor

May 1998 doc.: IEEE 802.11-98/201

Conclusions

- $\bullet \ OQPSK \ is \ slightly \ more \ power \ efficient \ than \ QPSK \\$
- The increase in power efficiency must be traded against a added complexity in the DFE and slightly degraded performance due to more complex equalizer training.
- •The power advantage of OQPSK is not substantial enough to warrant adoption without further study of receiver issues.

Submission Slide 11 Nelson & Baldwin, Harris Semiconductor