September 1998

Doc: IEEE802.11-98/319a

Impact of Bluetooth on 802.11 Direct Sequence Wireless LANs

Greg Ennis

Ennis Associates 16331 Englewood Ave. Los Gatos, CA 95032

Submission

page 1

Greg Ennis, Ennis Associates

September 1998

Doc: IEEE802.11-98/319a

Fast Frequency Hopping

- Bluetooth is a fast frequency hopping system focused on PAN applications
 - basic hopping period 625 microseconds
- Supports voice and data
- Low power with higher power option
- No carrier sense, no deferral
- Operates within 2.4 GHz band

Submission

page 2

September 1998

Doc: IEEE802.11-98/319a

Overlap Probability

- What is the probability that an 802.11 packet and a Bluetooth transmission will overlap in both time and frequency?
- Time overlap: depends on duration of packet and relative timing of BT hopping
- Frequency overlap: depends upon number of channels geographic dependence

Submission

page 5

Greg Ennis, Ennis Associates

September 1998

Doc: IEEE802.11-98/319a

Time Overlap

- Let L = 802.11 packet duration, H = Bluetooth dwell duration
- Packet will partially overlap either L/H or L/H + 1 dwell periods, depending on relative timing
- Here $\lceil x \rceil$ = ceiling(x) = least integer greater than or equal to x

Submission

page 6

Doc: IEEE802.11-98/319a

Example Time Overlap

Suppose d = the "delta" between the last Bluetooth hop and the start of the packet, where L = 1.3H and d > .7HThen the packet will overlap 3 Bluetooth dwell periods

September 1998

Doc: IEEE802.11-98/319a

Time Overlap Probability

The probability that an 802.11 packet of duration L will overlap with L/H Bluetooth dwell periods of duration H is

The probability that it overlaps with $\lceil L/H \rceil + 1$ dwell periods is

$$1 - \lceil L/H \rceil + L/H$$

Submission

page 8

Doc: IEEE802.11-98/319a

Frequency Overlap

- In North America, the probability that at any given time a Bluetooth transmitter is on a narrowband channel outside of a given wideband 802.11 DS channel is 2/3
- If an 802.11 packet overlaps with N
 Bluetooth dwell periods, the probability of no frequency overlap is (2/3)^N

Submission

page 9

Greg Ennis, Ennis Associates

September 1998

Doc: IEEE802.11-98/319a

Combining Time and Frequency Overlap Probabilities

For North American operation, the probability that an 802.11 packet of duration L experiences no Bluetooth collisions is

$$(2/3)^{\lceil L/H \rceil} (\lceil L/H \rceil - L/H)$$

$$+ (2/3)^{(\lceil L/H \rceil + 1)} (1 - \lceil L/H \rceil + L/H)$$

Submission

page 10

September 1998

Doc: IEEE802.11-98/319a

What 802.11 Mechanisms to use?

- Fall back rates
 - increases packet size, hence likelihood of error
- RTS/CTS
 - Bluetooth won't obey. RTS/CTS may succeed yet DATA transfer fails
- Reassociation to a new AP
 - Same interference will be present
- Fragmentation

Submission

page 11

Greg Ennis, Ennis Associates

September 1998

Doc: IEEE802.11-98/319a

Fragmentation

- 802.11 MAC allows for fragmentation
- Chain of frames DATA-ACK-DATA-ACK, separated by SIFS
- In case of error, transmitter backs off, continues starting with errored fragment
- Overhead: PHY and MAC headers
- Beneficial under high error conditions

Submission

page 12

September 1998

Doc: IEEE802.11-98/319a

Model of Bluetooth/802.11 DS

- Model developed incorporating calculation on overlap probability
- Inputs: 802 Data rate + packet size, Bluetooth hop rate + picocell utilization
- Output: "Degradation Factor" versus fragment size
 - Degradation Factor is ratio of nonfragmented unimpaired transmission time to impaired time

Submission

page 13

Doc: IEEE802.11-98/319a

Limited Bandwidth Situations

- France, Japan, etc.
- Impact is even more significant
- Example: if only two 802.11 channels available, expression for non-collision becomes

$$(1/2)^{\lceil \mathbf{L}/\mathbf{H} \rceil} (\lceil \mathbf{L}/\mathbf{H} \rceil - \mathbf{L}/\mathbf{H})$$

$$+ (1/2)^{(\lceil \mathbf{L}/\mathbf{H} \rceil + \mathbf{1})} (1 - \lceil \mathbf{L}/\mathbf{H} \rceil + \mathbf{L}/\mathbf{H})$$

Submission

page 18

Conclusions

- Bluetooth can impact 802.11 DS significantly, particularly on large packets
- Most 802.11 mechanisms for responding to poor channel quality either have no impact or make things worse
- Fragmentation can help, mainly at lower data rates and high picocell utilizations
- Fallback to low-rate FH may be useful

Submission

page 20

Greg Ennis, Ennis Associates

Doc: IEEE802.11-98/319a