
March 1998 doc.: IEEE 802.11-98/111

Submission Page 1 J. Tavormina, C. Rypinski, Ubiquity

Submission
IEEE P802.11
Wireless LANs

Title: General Partial-Response Pulse Shape Recommendation

Date: March 10, 1998
Authors: Joseph J. Tavormina,  Chandos A. Rypinski

Ubiquity Communication Inc.
1361 Redwood Way
Petaluma, CA 94954 USA
Tel/fax: +1 707 792 5390/5399
E-m:  Error! Bookmark not defined.

Summary
This paper is offered to the 5 GHz PHY subgroup of IEEE 802.11 in two parts:  1)  “Introduction” and 2)
“Mathematical Derivation and Example Result for a General Partial Response Pulse Shape.”

The introduction by C. Rypinski describes the relevance and application of this work to the selection of the 802.11
PHY, and briefly reviews some background for theory and application.  This minimized spectrum pulse shape is
directly applicable to coherent and non-coherent detection and to any amplitude, phase or time coding of
information.  Once the shape is established at baseband, all remaining steps must be linear.  The theory and
mathematics are believed to have been in the public domain for decades.  Some implementations might have
proprietary features.

The “Mathematical Derivation…” is the development of a method for calculating a desirable pulse shape, and it
applies the result to a sample pulse shape providing a power density spectrum which would be suitable to 802.11
reducing the amount of bandwidth lost to guard bands at the edge of the allocation and fir getting a larger proportion
of a channel defined at the 27 down points for data.
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Part I Introduction—C. A. Rypinski
A recommended definition of pulse shape is given, which if applied to any or all of the modulations proposed to
IEEE 802.11 will result in systems meeting the required out-of-band emissions requirements with reduced analog
filtering.

The method of computation used to obtain the recommended pulse shape has a long history.1  In the last few years,
the implementations of designs, using this mathematical approach to digital pulse shaping, have become increasingly
frequent.  The hardware implementation feasibility and economy was shown in a presentation to IEEE 802.9 in
1990.2  My Company no longer thinks it appropriate to hold the detail of the calculation as a trade secret.  The
method has appeared in contributions to 802.14 and is believed to be used in the NEC 802.11 PHY proposal (98/34,
98/35) and possibly others.  Some implementation details have appeared in patents.3

The initial pulse shape picked in 1989 for IEEE 802.9 was the 2/3rds compressed duobinary (2T/3)^sin(3ππt/2T) / ππ
t((2T/3)-t) rather than the raised cosine now commonly used.  There is probably little difference in the end result
after filtering.  The choices for window size and sample frequency are also important.  The values used in the
example are reasonable, but not necessarily the best choices.

There may be Committee members who do not realize the power and importance of this technique, or think that it is
so expensive to implement that it need not be considered.  The cost of ignoring this possibility is high.  In the
alternative.the cost of analog filters and additional signal processing that are required will be much more.  The loss
of eye opening from intersymbol intererence is also significant showing as decreased tolerance to noise and
interference.  As compared with GMSK the potential bandwidth required for a given data rate will be much smaller.
The realized improvement can be greater than the benefits of FEC, diversity or low-degree spreading in systems with
bit-at-a-time out-of-band emissions filtering.

Implementation in hardware could require a shift register of the required speed for one cell per coefficient (32 in the
example) and a resistor value representing the magnitude of that coefficient.  It can also be implemented in DSP with
a D/A converter and coefficient ROM, however this might use more power.

This pulse envelope shape is applicable to almost all modulations.  If the first pulse has a defined and suitable
spectrum, others may follow that are altered in polarity or amplitude.  Assuming linearity, the spectrum is the same
as the elementary pulse.

The selection of this pulse shape does not contain the issue of coherent vs. non-coherent modulation nor does it favor
any of the proposed modulations.

It does require linear tranfer of the baseband envelope shape to rf.  It does not require linear rf amplifiers as does
ODFM or non-offset QPSK.  The designs employed by my Company do not use linear amplification even though the
detail of the envelope shape is preserved.  In this case, the potential backoff loss of 7-11 dB of maximum power
output from a given transistor is not present.

Attention is directed to Figure 18 in Part II.  This is the video modulating wave form for the selected bit sequence.
It shows amplitude values slightly exceeding 1 and below 0.  These must not be clipped.  Figure 20 shows the
power density spectrum.  The first null for sin(x)/x would be at 1x10^-7; and in this case, the edge of the roll-off
is about 70% of this frequency.  In addition, the side lobes do not exist as normally seen.  The high level of
carrier is the result of using simple AM modulation.  The same envelope for QPSK would not show the carrier or
near carrier frequency components with white bit patterns.  The implications on filtering requirements and adjacent
channel spacing should be obvious.

                                                          
1 “Handbook of Digital Signal Processing Engineering Applications,” Edited by D. F. Elliott, Academic Press Inc.,
San Diego, 1987, ISBN 0-12-237075-9
2 “Report on NRZST Line signal Experimental Results,” C. A. Rypinski, IEEE 802.9-89/123, and “theory and
Practic of NRZST Modulation with Line Compensation at the Transmitter, C. A. Rypinski, IEEE 802.9-90/7
3 “RF Modem with Improved Binary Transversal Filter,” G. L. Somer, U. S. Patent 4,773,082
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Part II Mathematical Derivation and Sample Result for a General
Partial Response Pulse Shape—J. J. Tavormina

The following derivation and simulation is constructed using Matchcad version 6.0.  Mathcad is available from
MathSoft, Inc., 101 Main Street Cambridge, Massachusets 02142.

The purpos of the derivation and simulation is to demonstrate the performance on an Amplitude Modulator that
employs raised cosine waveform shaping, 6-bit digital quantization of the analog waveform, and digitization at a
sampling rate of 4 per symbol period.  The parameter values used in the model result in a shaping filter with 32 taps
(8 symbols) in length.  The data sequence used to demonstrate performance of the modulator is 35 bits in length, and
is formed from a random bit pattern.

For the selected parameter values, the performance of the modulator is shown to produce a signal bandwidth at the
26 dB down points that is equal to the reciprocal of the symbol period.  At 1.4 times the signal bandwidth, out-of-
band emissions are shown to be −50 dB with respect to the AM carrier and −40 dB with repect to the shoulder of the
modulated signal.  No modulation sidelobes are visible.

For the selected parameter values, out-of-band emissions are limited by the resolution of the analog-to-digital
conversion.  The simulation indicates that greater suppression of out-of-band emissions may be achieved through use
of a higher performance digitizer.
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Shaped AM modulation is employed as an example use.  The symbol period is given by:
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The amplitude s(t) of the unshaped baseband signal is characterized by sharp transitions at symbol (bit)
boundaries.  Consider a single "on" bit at t=0:
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The digitized representation of the baseband signal contains D samples per symbol period:
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The Fourier components of the digitized signal are given by:
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Waveform shaping is used to control the spectral content of the transmitted signal.  Industry practice is to
apply a square-root raised-cosine pulse shaping filter g(t), with a spectral roll-off factor α.  Typical values
for α range from 0.2 for 16QAM modulation to 0.5 for QPSK modulation (See DAVIC 1.0 Specification
Part 08 Physical Layer Interface for transmission over copper pairs and coax at bandwidths up to 40
MHz).  The impulse response g(t) given by:
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The singular point at g(0) evaluates to:
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=g 0 1.098

A graphical representation is shown below:
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In practice g(t) is implemented as a weighting function in a Finite Impulse Response filter which by
necessity is truncated in time.  Residual power spectral density is minimized when the points of truncation
coincide with zero crossings; the spectral roll-off factor may be chosen to produce zero crossings at these
points.  For truncation points ±tL:
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The Fourier components of g(t) truncated at ±tL is calculated below.  Because g(t) has a singularity at t=0

the Fourier integral is split into two parts:
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The digitized FIR implementation of the waveform shaping function contains M taps and D samples per
symbol period:
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The Fourier components of the digitized shaping function are given by:
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The logarithmic Power Spectral Density of the shaping function is:
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The weighting coefficients gk are applied to the signal sk using a tapped delay line:
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The Power Spectral Density of the shaped digitized signal are shown below:
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Figure 11

Application of the weighting coefficients gk to the signal sk represents convolution in the time domain,

which corresponds to multiplication of the spectral components Gn and Sn in the frequency domain.  The

output spectrum can be computed directly as follows:
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Figure 12

Consider a random 32-bit sequence of digitized data:
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The unshaped amplitude signal that results from the data sequence is characterized by sharp transitions
at symbol (bit) boundaries:
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The digitized representation of the signal contains D samples per symbol period:
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The Power Spectral Density of the unfiltered data sequence is shown below:
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Figure 16

The Power Spectral Density of the filtered data sequence can be computed directly as follows:
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Figure 17

The time domain response of the filtered data sequence is shown below.  The response has been
adjusted to compensate for the (M+1)/2 sample group delay introduced by the shaping filter:
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If signal shaping is performed digitally, quantization error will cause the time domain signal at the analog

output of the shaping filter to be inexact.  An Q-bit digital-to-analog conversion provides 2Q possible
output levels, with the full scale output corresponding to F.  Thus, the quantization error results in a
systematic roundoff error in the weighting coefficients:
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The Power Spectral Density of the quantized shaped signal is:
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Figure 20


