Distributed access procedures for supporting real-time traffic:
Blackburst
Motivation

- Wish to support real-time applications with QoS guarantees, e.g., voice, video
- Basic access method - CSMA/CA
 - Does not provide QoS guarantees
- Centralized access method - polling
 - Cannot operate simultaneously in adjacent cells
 - Requires an access point
Requirements

• Three interframe spacings, as in the IEEE 802.11 standard
 – T_{SHORT} - acknowledgment minipackets
 – T_{MED} - real-time (RT) stations
 – T_{LONG} - data stations
• Sensing capabilities, as in CSMA/CA
• Ability of RT stations to send *black bursts*
Basic operation

• RT station has an access instant
 – Transmits for at least T_{PKT} s.
 – Schedules the next access instant to D_{MIN} s. in the future

• RT station has a scheduled access instant
 – If channel has been idle for T_{MED} s., it transmits
 – Otherwise, waits until channel has been idle for T_{MED} s. and enters into black burst contention
Black burst contention

- Length of black burst is proportional to delay in accessing the channel
- Access instants of distinct stations differ by at least $T_{\text{PKT}} \Leftrightarrow$ black bursts differ by at least a black slot
- Unique winner after a black burst contention period - the station that has been waiting the longest
Example of operation

T_{PKT}

RT 1 RT 2

T_{MED}

DATA

RT 1 RT 2

D_{MIN}

Delay

RT 1

D_{MIN}

Delay

RT 2
Negative Acknowledgment

• Upon reception of an RT packet, a receiver knows when to expect the next packet

• Possibility of using a negative acknowledgment scheme
 – Reduced overhead
 – Robustness against hidden stations (implied RTS scheme)
Properties

- Compatible with IEEE 802.11
- RT traffic has priority over data traffic
- RT stations access the channel in round-robin order
- RT packets are not subject to collisions
- Supports RT stations with distinct bandwidth requirements
- Robust against hidden stations
Voice over 802.11 DS - Performance

2 Mbps 802.11 DS
Average data packet delay = 10 ms

Data Load = 22%

of voice stations @ 64 Kbps = 14
@ 32 Kbps = 21

Data load = 41%

of voice stations @ 64 Kbps = 8
@ 32 Kbps = 12
Publications on Blackburst

• João L. Sobrinho and A.S. Krishnakumar, Real-Time Traffic over the IEEE 802.11 Medium Access Control Layer, Bell Labs Technical Journal, Autumn 1996

• João L. Sobrinho and A.S. Krishnakumar, Quality-of-Service in Ad Hoc Carrier Sense Multiple Access Wireless Networks, IEEE Journal on Selected Areas in Communications, Vol. 17, No. 8, August 1999