November 2000

doc.: IEEE 802.11-00/412r1

IEEE P802.11
Wireless LANs

VDCF State Machine Description

Date:
November 6, 2000

Author:
Greg Chesson, Wim Diepstraten, Maarten Hoeben,

Duncan Kitchin, Harold Teuninssen, Menzo Wentink

Editor:
Menzo Wentink

Intersil Corp. NL

Rembrandtlaan 1a

Bilthoven, The Netherlands

+31-30-225-6060

menzo@nwn.com

Abstract

This document contains a state machine description of the Virtual DCF (vDCF), as a part of the Distributed QoS proposal.

1 Abbreviations and Acronyms

BO
Backoff Counter in Channel Access Mechanism

CCA
Clear Channel Assessment

CO[]
Contention Offset vector

CO[y]
Contention Offset for category y

CW[]
Contention Window vector

CW[y]
Contention Window for category y

CWmax[]
Maximum Retry Contention Window vector

PBO[y]
Post Backoff for category y

Q[y]
Status of Queue for category y (empty / non-empty)

RC
Retry Count

SBO[]
Scheduled Backoff vector

SBO[y]
Scheduled Backoff for category y

Slot
DCF Backoff Slot

TrC
Transmission Candidate

Tx
Transmission

TxFailed
Transmission Failed

TxPending
Transmission Pending

TxSuccess
Transmission Successful

2 vDCF State Machine Description

Conceptually, a vDCF MAC consists of several virtual DCF’s that operate in parallel, each using it’s own channel access mechanism. But because the backoff counters in these channel access mechanisms are synchronized (they all see the same medium conditions) and because collisions are resolved prior to transmission, it is possible to describe a vDCF MAC as a single scheduler which sequentially passes down MPDUs of all categories to a single channel access function. The scheduler passes down the MPDUs and indicates the remaining backoff associated with it, which can be viewed as a ‘delta-backoff’.

[image: image1.emf]Idle

vDCF Scheduler

TxPending

1. New Arrival

2. Arrival in

Empty Queue

3. TxSuccess

4. TxFail

5. Queues Empty

The delta backoff description results in two state machines: a scheduler state machine and a channel access state machine. The scheduler determines which MPDU is head of line (if any) and calculates the remaining scheduled backoff time associated with it. The channel access mechanism decides whether it should perform a backoff or whether the MPDU can be transmitted immediately. The state machines description has three interfaces: Queues – Scheduler, Scheduler – Channel Access and Channel Access – PHY, which are associated with several variables and triggers (see figure).

If an MPDU arriving in an empty queue selects a scheduled backoff smaller than the actual backoff in channel access backoff counter, the scheduler will pass the smaller value down and channel access will start counting from the new (smaller) backoff. The scheduler corrects the pending scheduled backofffs, by adding the difference between the old and the new backoff. In this way, the scheduler can always replace a pending MPDU by a newer one with a smaller backoff, if necessary. [MMW – this is only true when channel access is in Backoff state, not in Transmit state.]

A. Queues – Scheduler Interface

a. Arrival[y]
direction: down
MPDU arrival in category y

b. Q[y]
direction: down
queue status for category y

B. Scheduler – Channel Access Interface

a. BO
direction: up & down
backoff value

b. PBO[]
direction: up & down
post-backoff values

c. TxPending
direction: down
indicates to channel acces whether a transmission is pending

C. Channel Access – PHY Interface

a. CCA
direction: up
clear channel assessment

c. Slot
direction: up
indicates that a backoff slot has passed

2.1 Scheduler State Machine

The scheduler is a state machine with two states, the Idle state (no MPDUs pending) and the TxPending state (one or more MPDUs pending in any of the queues). When all queues are empty, the scheduler resides in the Idle state. When an MPDU of category y arrives, the scheduler will enter the TxPending state, after calculating the associated scheduled backoff value. If category y was still in post-backoff when the MPDU arrived, the scheduled backoff is equal to the remaining post-backoff. Otherwise, the scheduled backoff is based on the contention offset and the contention window that are associated with category y (see table).

When in the TxPending state, there is always at least one MPDU pending for transmission. New MPDU arrivals do not trigger the scheduler, unless the MPDU arrives in a previously empty queue. The scheduler will in this case determine the associated scheduled backoff (as described above) and stay in the TxPending state.

After a successful transmission of category y, the scheduler will calculate a backoff for the next MPDU queued for category y, if any. Otherwise it will set the post-backoff counter associated with category y, with a value based on the contention offset and the contention window (see table). Next, it will select the next MPDU for transmission, which is characterized by the lowest scheduled backoff value. If more than one category has the lowest backoff value (a local collision), the scheduler will select the highest category as the winner. The winning backoff is then subtracted from the other scheduled backoffs (if any). In case of a local collision, one or more scheduled backoffs will become zero after the subtraction and the scheduler generates a new backoff for those categories (based on the contention offset and contention window). Finally, the winning MPDU and the associated backoff are passed down to channel access. The scheduler remains in the TxPending state.

[image: image2.emf]Scheduler

State Machine

Channel Access

State Machine

A. Queues –Scheduler Interface

B. Scheduler –Channel Access Interface

C. Channel Access –PHY Interface

Queues

PHY

After a failed transmission, the scheduler will increase the retry count and, if the retry count is not exceeding the maximum retry count, double all contention windows and determine new backoff values for all categories (based on contention offset and contention window). The scheduler then follows the same procedure as described above to select a new MPDU for transmission. If the retry count did exceed the maximum, the scheduler will discard the MPDU, set the associated post-backoff counter and proceed with selecting a new winning category, as described above. [MMW: unresolved is what happens when a new frame arrives in an empty queue while the other queues are in retry backoff.]

If all queues empty (after a successful or failed tranmission in excess of the retry count), the scheduler sets the appropriate post-backoff counter and reverts to the idle state.

The following diagrams provide a summary of the above:

1. New Arrival

a. SBO[] = 0
initialize SBO's

b. if PBO[y] <> 0 {
if the post-backoff is still running

ba. BO = PBO[y] }
set backoff to remaining post-backoff

c. else {
else

ca. BO = CO[y] + RND(CW[y]) }
set backoff to offset plus random value within contention window

2. Arrival in Empty Queue

a. if PBO[y] <> 0 {
if the post-backoff is still running

aa. BO = PBO[y] }
set backoff to remaining post-backoff

b. else {
else

ba. BO = CO[y] + RND(CW[y]) }
set backoff to offset plus random value within contention window

c. if SBO[y] < BO {
if MPDU enters at head of line (i.e. selected SBO is smaller than running BO in Access Ctrl)

ca. SBO[] = SBO[] + (BO - SBO[y])
then add backoff difference to other categories with backlog

cb. BO = SBO[y] }
and set backoff counter to value of new winning MPDU

3. Successful Transmission

a. if Q[y] = empty {
if queue y empties

aa. PBO[y] = CO[y] + RND(CW[y]) }
set post-backoff counter

b. else
else

ba. SBO[y] = CO[y] + RND(CW[y]) }
set scheduled backoff for next MPDU in queue

c. SBO[W] = min(SBO[x])
select winning categories

d. TrC = max(W)

highest winning category becomes next transmission candidate

e. SBO[] = SBO[] - SBO[TrC]

correct remaining scheduled backoffs with winning backoff

f. if SBO[] = 0 {
for categories that had local collisions

fa. SBO[] = CO[y] + RND(CW[y]) }
schedule a new backoff

g. BO = SBO[TrC]
pass winning backoff down to channel access

4. Failed Transmission

a. RC = RC + 1
increment the retry counter

b. if RC > limit {
if the retry count exceeds the retry limit

aa. RTC = 0
reset the retry counter

ab. discard MPDU
discard retried MPDU

ac. goto 3a }
goto 3a

c. CW[] = limit(CWmax[], 2 * CW[])
otherwise double all contention windows (upper bounded by CWmax[])

d. SBO[] = CO[] + RND(CW[])
schedule new backoff values for all categories

e. goto 3c
and goto 3c

5. Queues Empty

a. goto idle state
goto idle state. Post-backoff was set already in transition 3 or 4.

2.1.1 Channel Access State Machine

The channel access mechanism receives MPDUs from the scheduler and forwards them to the PHY with appropriate timing. The state machine has three states, Idle (no tranmissions are pending), Backoff (a pending MPDU requires a backoff prior to transmission) and Transmit (during actual transmission and, if applicable, while waiting for an Acknowledgement). Running aside the channel access state machine are the post-backoff counters of each category.

If channel access receives a pending transmission event when in the Idle state, it will first check the medium condition. If the medium has been idle longer than a DIFS period, channel access enters the Transmit state and the pending MPDU will be transmitted immediately. If the medium has not been idle longer than a DIFS period, channel access will defer and enter the Backoff state, with the backoff value as indicated by the scheduler. While in Backoff, the backoff decrements based on PHY related clock ticks. Note that the Backoff state combines both the initial defer and the backoff itself. If the backoff counter reaches zero, channel access enters the Transmit state and the MPDU is transmitted.

In the Transmit state, the channel access mechanism hands over the pending MPDU to the PHY for transmission and if applicable, waits for an Acknowledgement. After a successful or failed tranmission of the frame, it sends the scheduler a TxSuccess or TxFail respectively. If the scheduler state remains TxPending, channel access receives the new MPDU and associated backoff and enters the Backoff state, where it performs the actions as described above.

[image: image3.emf]Post-Backoff

Post-Backoff

Post-Backoff

2. CCA > DIFS

& TxPending

1. CCA < DIFS

& TxPending

3. TxDone

& !TxPending

4. TxDone (F/S)

& TxPending

5. BO = 0

Channel Acess

6. Slot & CCA > DIFS

Idle

Transmit Backoff

7. Slot & CCA > DIFS

Post-Backoff

If the scheduler goes Idle after transmission, access control will go into the Idle state as well. The scheduler sets the appropriate post-backoff counter, which will start counting down.

The following diagrams provide a summary of the above:

1. CCA < DIFS & TxPending

a. goto Backoff
If a first transmission is pending and the channel has been clear for a shorter period than DIFS then enter the Backoff state

2. CCA > DIFS & TxPending

a. goto Transmit
If a first transmission is pending and the channel has been clear for longer than DIFS, then directly enter the Transmit state.

3. TxDone & !TxPending

a. goto Idle
If no more MPDUs are pending after a (successful or failed) transmission then return to the Idle state

4. TxDone & TxPending

a. goto Backoff
If MPDUs are pending after a (successful or failed) transmission return to the Backoff state.

5. BO = 0

a. goto Transmit
If the backoff has counted down to zero goto the Transmit state.

6. Slot & CCA > DIFS

a. BO = BO – 1}
If a slot time has expired and the medium has been idle for more than a DIFS then decrement the backoff counter BO

7. Slot & CCA > DIFS

a. while PBO[y] > 0 {
while PBO[y] larger than zero

aa. PBO[y] = PBO[y] – 1 }
decrement PBO[y]

Submission
page 7
D-QoS Group

