SYSTEM PLAN
WIRELESS LAN--BUS MODE, 2 MBS
1700-1710 OR 2150-2160 MHZ, 3.2 MBS WITH BCH (31,21) FEC

OVERVIEW
This plan explores a possible wireless LAN operating using frequencies authorized in Part 95 for Common Carrier Multi-point Distribution Service or newly authorized frequencies. A transmission capacity of 3.2 Mbs in the medium is allocated between data, forward error correcting coding and losses from propagation and processing time, to yield a 2 Mbs channel. The system plan includes special measures for avoidance of excessive degradation from time dispersion and cochannel interference from frequency reuse.

The system concept is based on the use of low power transmitters, short distance propagation paths and multi-site "macro' diversity with fixed radio sites located on a continuous grid of square cells 100 meters/325 feet on a side. The indicated transmitter power requirement is 250 microwatts with 20 dB margin.

The LAN protocols served are limited to Bus mode and then to a 2 Mbs transmission capacity with a Token Passing Protocol. There may be non-optimum possibility for using CSMA/CD.

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>SYSTEM PLAN</td>
<td></td>
</tr>
<tr>
<td>DERIVATION OF SYSTEM PLAN</td>
<td></td>
</tr>
<tr>
<td>Frequency Utilization</td>
<td>1</td>
</tr>
<tr>
<td>Data Modulation</td>
<td>1</td>
</tr>
<tr>
<td>Radio System Layout</td>
<td>2</td>
</tr>
<tr>
<td>Avoidance of Frequency Reuse</td>
<td>2</td>
</tr>
<tr>
<td>Cell Definition with Directional Antennas</td>
<td>2</td>
</tr>
<tr>
<td>Time and Frequency Division Duplexing</td>
<td>3</td>
</tr>
<tr>
<td>Forward Error Correcting Code</td>
<td>3</td>
</tr>
<tr>
<td>Macro Diversity and Combining Method</td>
<td>4</td>
</tr>
<tr>
<td>RADIO PROPAGATION AND LOSS BUDGET</td>
<td>5</td>
</tr>
<tr>
<td>BRIDGING AND BACKBONE LAN CONFIGURATION</td>
<td>6</td>
</tr>
<tr>
<td>DESCRIPTION OF THE PLAN IN REGULATORY TERMS</td>
<td>6</td>
</tr>
</tbody>
</table>
SYSTEM PLAN
WIRELESS LAN--BUS MODE, 2 MBS
1700-1710 OR 2150-2160 MHZ, 3.2 MBS WITH BCH (31,21) FEC

OVERVIEW
This plan explores a possible wireless LAN operating using frequencies authorized in
Part 95 for Common Carrier Multi-point Distribution Service or newly authorized frequencies. A
transmission capacity of 3.2 Mbs in the medium is allocated between data, forward error correcting
coding and losses from propagation and processing time, to yield a 2 Mbs channel. The system plan
includes special measures for avoidance of excessive degradation from time dispersion and cochannel
interference from frequency reuse.

The system concept is based on the use of low power transmitters, short distance
propagation paths and multi-site "macro" diversity with fixed radio sites located on a continuous grid of
square cells 100 meters/325 feet on a side. The indicated transmitter power requirement is 250
microwatts with 20 dB margin.

The LAN protocols served are limited to Bus mode and then to a 2 Mbs transmission
capacity with a Token Passing Protocol. There may be non-optimum possibility for using CSMA/CD.

SYSTEM PLAN
DERIVATION OF SYSTEM PLAN
The plan is built up from the primary limiting conditions such as spectrum allocation,
information capacity and radio propagation. The plan is based on the use of a 10 MHz bandwidth at
either 1700-1710 or 2150-2160 MHz.

Frequency Utilization Plan
The available space is divided into 5 channels separated by 2.0 MHz and starting at
a center frequency 1.0 MHz above the lower edge of the allocation. The bit rate is 3.2 Mbs in the
medium.

Data Modulation
It is necessary to assume a maximum symbol rate based on the time spreading effects
that will be experienced. At the same time a high order of spectrum efficiency is desired, and this may
be an incompatible requirement. Quadrature Phase Shift Keyed modulation (QPSK) with phase
coherent detection is the initial choice for the basic modulation. For a carrier modulated in this way,
there is 2 bits per symbol of data. Delimiting characters may be keyed as zero amplitude for intervals
of 1 bit on each phase. The phase-shift keyed carrier is enclosed in a DSBSC (Double Sideband
Suppressed Carrier) envelope. This results in an amplitude modulated waveform for which all phase
shifts take place at zero amplitude.

With 4 subcarriers so modulated, the symbol rate is 1/8th of the overall bit rate—there
is parallel transmission of each byte. Reducing the symbol rate to 400 kbs (3.2 Mbs), is a major factor
in reducing sensitivity to multi-path propagation. A further advantage is that the requirement for delay
distortion in channel band filters is moderated by a factor of 4, and these filters are a large cost factor.

It has been shown that the minimum spacing between identically modulated carriers
(format not data) is equal to the symbol rate. The channels are isolated at detection by orthogonality,
not by band filters. Referred to a center frequency of 0, the subcarriers can be at +/- 200 and +/- 600
kHz. If a pilot carrier is used, it would be placed 400 kHz above the highest frequency subcarrier (or
below the lowest).

One value in choosing this modulation is that it can be extended to data rates of 10
Mbs and 1.25 megasymbols/second. At the low rate chosen, the modulation should be adequate
against time dispersion for much longer distances than needed for the proposed grid dimensions.

Radio System Layout

The fixed stations are assumed to be located at the intersections of a square grid about 100 meters (327 feet) per side or 140 meters on the diagonal. It is assumed that a mobile at any location will be within range of 4 sites provided that there is no major obstruction.

Bernhardt\(^2\) has shown that square cells with base station either at diagonal corners or at the centers of the sides is a good choice for an interference limited system, and particularly for the case where there is a 1% probability of signal-to-interference ratio poorer than 15 dB with a standard deviation of 10 dB (Table IV). The difference between the two plans affects only the definition of where the worst case mobile location is positioned for which the calculation is made.

Avoidance of Frequency Reuse

An indefinitely large number of fixed radio stations may be necessary to cover large areas, and it would then be inevitable that frequency reuse must occur at the closest spacings allowed by tolerable interference levels. This plan depends on a switching and control logic so that only one group of four sites (a CELL as defined below) transmits at the same time using four of the possible channels.

Cell Definition

The (approximately) square area defined by four sites at corners is one cell. A mobile within that square depends upon the availability or existence of all four sites for reliability of operation. The location of the mobile is required knowledge for the fixed equipment.

When the mobile transmits, the signal is received by the four fixed sites defining the cell. When the mobile receives, the signals, containing duplicate information, may be used from any or all of the four fixed sites.

It is necessary for the received side of each fixed site to have four receive channels each connected to a directive antenna with one quadrant of coverage. At the beginning of a mobile transmission, the receiver decides which quadrant is furnishing the best signal; and that information is made available to a higher level. This is an essential part of the location mechanism.

These fixed directional receive antennas provide gain that reduces the necessary mobile transmit power by 3 dB minimum. The fixed transmit antenna is omni-directional.

Time and Frequency Division Duplexing

A mobile transmission is made immediately following receipt of a token passing message received from a fixed station. The mobile uses the fifth channel in the frequency plan for all transmissions. The system is full duplex. There is no possibility of the mobile receiving a token pass message except when it is originated by the base.

Forward Error Correcting Code

Radio systems are more efficient and economical when power levels and antenna sites are defined to produce no better than .01 BER at the limits. It is necessary to provide an envelope for the 802.4 packets in which a second error-correcting code has been applied to all but the frame delimiters.

There is precedent for wrapping a second error-correcting code around a message already containing error correction. Because of the radio system, there is significant value in determining error in the message as it goes along rather than waiting for a final CRC at the end of a long message.

2. R. C. Bernhardt; "Macroscopic Diversity in Frequency Reuse Radio Systems;" IEEE Journal on Selected Areas in Communications, SAC-5 June 1987; p. 862
There are many error detecting and correcting codes, from which a common choice has been made. The BCH (31,21) block code uses a block of 31 bits to carry 21 bits of data. The code is capable of correcting two errors anywhere in the block and detecting all 3-bit errors and many errors of larger value. For comparison, the coding gain for 1 and 2 error correcting forms of the BCH 31 bit block code are shown below. The 5-check-bit code results in a loss until the channel error rate approaches 10^{-3} or better.

<table>
<thead>
<tr>
<th>Channel Error Out</th>
<th>Error Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E.R. BCH (31,26)</td>
<td>BCH (31,21)</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>3.5×10^{-3}</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>4.2×10^{-4}</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>4.5×10^{-6}</td>
</tr>
</tbody>
</table>

The coding gain is greater the more bit errors that can be corrected. Indications from the work on the European digital telephone systems suggests that it is quite possible that Reed-Solomon codes are capable of providing correction of more errors per block than for comparably efficient BCH type.

The default selection for FEC uses 32.25% of the transmitted bits for error correction. With 1.6 Mbs in the medium, the data transfer capability is less than 1.083 Mbs. Since buffering is already inevitable from the FEC, the exact rate is not significant in altering the capability of the system.

The gains shown by Porter (see diversity) are probably much more due to the diversity function than to forward error correction at the input signal levels. If the FEC detects errors and can control the selection of the diversity port, this may be sufficient for great improvement.

Macro Diversity and Combining Method

There is a choice of several techniques and combinations of techniques to give receivers more than one chance at receiving a message correctly. Space diversity has been eliminated from consideration because the widely separated antennas are mechanically awkward at mobiles. Frequency diversity, alone, is advantageous against multi-path fading, but not against shadows from large obstacles. These are both types of "Microscopic" diversity systems where all of the signals combined are all between the same two sites.

"Macroscopic Diversity" has been used to describe a choice of path from multiple sites. If these sites surround the mobile, the chance of one of these sights being unshadowed or only slightly obstructed is greatly improved.

The most effective systems use both types of diversity or macro alone with additional ports to obtain an ultimate possibility better than 1×10^{-7} (3.2 or 4.1 macro, micro).

There are a number of combining methods which have been well analyzed. The simplest is "selection" diversity in which the best antenna or one of N signal paths is chosen by switching. Methods of much greater complexity combine separate radio signals with random relative phase at RF. These methods place limitations on binary signal modulations which will work satisfactorily or the method will require a pilot carrier. Because the time of arrival of different signals from different sites could differ by a large fraction of a symbol time, there is risk in assuming the use of a phase-sensitive predetection combining method.

Some data is shown below to which the following conditions apply: 1) Coherently detected QPSK modulation; 2) Error coding is BCH (31,21); 3) 2-ray fading; 4) $d=0.1$; 5) 900 MHz test frequency; 6) selection diversity.

4. W. C. Jakes; "Microwave Mobile Communications," Wiley 1974; chapters 5, 6
5. This data was obtained from a Figure shown by P. T. Porter, Bellcore, during a workshop held in conjunction with CCIR IWP 8/13 on March 10, 1987.
Average Reference SNR (dB) for Error Probability vs. (macro,micro) order of diversity

<table>
<thead>
<tr>
<th>B.E.R.</th>
<th>1.1</th>
<th>2.1</th>
<th>3.1</th>
<th>4.1</th>
<th>1.2</th>
<th>2.2</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-1</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^-2</td>
<td>30</td>
<td>11</td>
<td>4</td>
<td></td>
<td>17</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10^-3</td>
<td>19</td>
<td>11</td>
<td></td>
<td>6</td>
<td>26</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>10^-4</td>
<td>31</td>
<td>16.5</td>
<td>10.5</td>
<td>37</td>
<td>17</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10^-5</td>
<td>22</td>
<td></td>
<td>15</td>
<td></td>
<td>22</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>10^-6</td>
<td>19.5</td>
<td></td>
<td></td>
<td>27</td>
<td>17.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^-7</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

RADIO PROPAGATION AND LOSS BUDGET

At 1700 MHz, the free space loss, for 71 meters (230 feet) between isotropic antennas is 74 dB, and it is 2 dB more at 2150 MHz. The distance is chosen as an approximation of the maximum distance the mobile can get from the nearest base site. This is the center of the square.

The conclusion has been drawn (under Diversity and FEC) that the total gain of these techniques leads to a required SNR of 20 dB for a 10^-6 BER. Using this value (which takes into account large scale and fast fading), the contingency margin may be reduced to a smaller value.

An opening loss budget for the base to mobile direction may build up starting with receiver residual noise power and concluding with required transmitter power output. The adjustments are shown with the correct sign for addition to the previous power level value to obtain transmit power. For the base to mobile direction, without using the gain of the quadrant antennas at the fixed site, the budget is as follows:

Receiver thermal noise power:
\[N_0 \text{ (dBm)} = -174 + 10 \log B \text{ (Hz)} \quad B = 1.6 \text{ MHz} \]
Receiver noise figure: + 4 dB
Mobile receive net antenna gain: - 5 dB
S/N for 10^-6 BER in Rayleigh fading with FEC and 4,1 Diversity: + 20 dB
Margin for detector efficiency: + 6 dB
Required received level: - 87 dBm
Path loss in free space: + 74 dB
\[L_p = 32.44 + 20 \log F_{\text{MHz}} + 20 \log D_{\text{km}} \]
Required transmit power (isotropic): - 13 dB
Net transmit antenna gain less cable loss: - 13 dB
Required transmitter power output--0 dB margin, FEC and Diversity, 10^-6 BER, 1.0 MHz BW:
Margin for shadow and penetration loss: + 20 dB
Required transmitter power output with margin, FEC and Diversity, 10^-6 BER, 1.0 MHz BW:
- 6 dBm

If available transmitter power may be increased by 6 dB, the choices are to increase the shadow loss margin or to use twice the distance.

It is essential to use the improvements from diversity and FEC to improve the error expectancy to better than 1x10^-6, not only for the power saving, but also it is impossible to get a low error rate with signal strength alone.

As shown above, the indication is that the required transmitter power output is about 250 microwatts. If the size of grid were increased 40% to about 460 feet on a side, the required power would be 500 microwatts.

6. S. Shibuya; "A Basic Atlas or Radio-Wave Propagation;" Wiley 1987; Figure 1-8a p. 124
BRIDGING AND BACKBONE LAN CONFIGURATION

If only the necessary transmitters operate for each transmission, the operation is like many small networks—one network per cell—and all networks are bridged to a common backbone. One cell is the extent of the bus definition.

If a mobile station joins the network, it must use the 802.4 Response Window procedure (5.1.4) to become recognized in the token passing sequence. In this process, the bridge becomes informed of the presence of each mobile in its cell. There is an opportunity for a mobile to move to another cell with each circulation of the token.

DESCRIPTION OF THE PLAN IN REGULATORY TERMS

This proposal is described in summary terms which might be used in text for technical standards or requirements as follows:

<table>
<thead>
<tr>
<th>Common to Mobile and Fixed</th>
<th>10 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>System RF Bandwidth:</td>
<td>10 MHz</td>
</tr>
<tr>
<td>Maximum bandwidth of channel at -6 dB:</td>
<td>2.0 MHz</td>
</tr>
<tr>
<td>Maximum duration transmitter ON:</td>
<td>100 millisec</td>
</tr>
<tr>
<td>Out-of-band radiation:</td>
<td>-30 dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fixed Transmitters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak output power: 500 microwatts (note 1.)</td>
</tr>
<tr>
<td>Maximum antenna power gain: 14 dB maximum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mobile Transmitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak output power: 250 microwatts (note 1.)</td>
</tr>
<tr>
<td>Transmit duty cycle—one transmitter: 1/80th</td>
</tr>
<tr>
<td>Maximum length of one transmission: 100 milliseconds</td>
</tr>
<tr>
<td>Maximum antenna power gain: 7 dB</td>
</tr>
</tbody>
</table>

Note 1. Value for outdoor operation. Upon showing of special conditions, such as operation entirely within a building offering shielding loss to interference with other systems, power levels 10 or 20 dB greater may be authorized on a case-by-case basis.