International Telecommunication Union

Recommendation ITU-R M.2084-1 (11/2019)

Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure twoway communications for Intelligent Transport System applications

> M Series Mobile, radiodetermination, amateur and related satellite services

International Telecommunication

Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radiofrequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

Policy on Intellectual Property Right (IPR)

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from <u>http://www.itu.int/ITU-R/go/patents/en</u> where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.

	Series of ITU-R Recommendations
	(Also available online at <u>http://www.itu.int/publ/R-REC/en</u>)
Series	Title
BO	Satellite delivery
BR	Recording for production, archival and play-out; film for television
BS	Broadcasting service (sound)
ВТ	Broadcasting service (television)
F	Fixed service
Μ	Mobile, radiodetermination, amateur and related satellite services
Р	Radiowave propagation
RA	Radio astronomy
RS	Remote sensing systems
S	Fixed-satellite service
SA	Space applications and meteorology
SF	Frequency sharing and coordination between fixed-satellite and fixed service systems
SM	Spectrum management
SNG	Satellite news gathering
TF	Time signals and frequency standards emissions
V	Vocabulary and related subjects

Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.

Electronic Publication Geneva, 2019

© ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.

RECOMMENDATION ITU-R M.2084-1

Radio interface standards of vehicle-to-vehicle and vehicle-to-infrastructure two-way communications for Intelligent Transport System applications

(Question ITU-R 205-5/5)

(2015-2019)

Scope

This Recommendation identifies specific radio interface standards of vehicle-to-vehicle and vehicle-to-infrastructure¹ communications for Intelligent Transport System applications. The technical characteristics described in this Recommendation are based on current Intelligent Transport Systems (ITS) applications in the mobile service.

Keywords

ITS, vehicle-to-vehicle communications, vehicle-to-infrastructure communications

Acronyms and abbreviations

3GPP	3 rd Generation Partnership Project
ARIB	Association of Radio Industries and Businesses
ATIS	Alliance for Telecommunications Industry Solutions
ATS	Abstract test suite
BPSK	Binary phase shift keying
CCSA	China Communications Standards Association
CEN	European Committee for Standardization (Comité européen de normalisation)
CSMA/CA	Carrier sense multiple access/collision avoidance
DCC	Decentralized congestion control
DSRC	Dedicated short range communications
EFC	Electronic Fee Collection
eNB	E-UTRAN NodeB
ETSI	European Telecommunications Standards Institute
FDD	Frequency Division Duplex
FDM	Frequency Division Multiplexing
FEC	Forward error correction
GNSS	Global Navigation Satellite System
HARQ	Hybrid automatic repeat request
IEEE	Institute of Electrical and Electronics Engineers
IMDA	Infocomm Media Development Authority of Singapore

¹ Vehicle-to-infrastructure communications includes two-way communications between vehicle and infrastructure.

ITS	Intelligent transport systems
LTE	Long term evolution
OFDM	Orthogonal frequency-division multiplexing
OFDMA	Orthogonal frequency division multiple access
PICS	Protocol implementation conformance statement
PIXIT	Protocol Implementation eXtra Information for Testing
QAM	Quadrature amplitude modulation
QPSK	Quadrature phase shift keying
SC-FDM	Single carrier-frequency division multiplexing
SC-FDMA	Single-carrier frequency division multiple access
TDD	Time division duplex
TDM	Time division multiplexing
TSS & TP	Test suite structure and test purposes
TTA	Telecommunications Technology Association
UE	User equipment
V2I	Vehicle-to-infrastructure
V2N	Vehicle-to-network
V2P	Vehicle-to-pedestrian
V2V	Vehicle-to-vehicle
WAVE	Wireless access in vehicular environments

Related ITU Recommendations

Recommendation ITU-R M.1453 communications at 5.8 GHz	Intelligent	Transport	Systems	_	dedicated	short-range
Recommendation ITU-R M.1890	Intelligent T	ransport Syst	ems – Guid	elines	s and Objecti	ves
Recommendation ITU-R M.2121 in the mobile service	Harmonizati	on of frequer	ncy bands fo	or Inte	elligent Trans	sport Systems

The ITU Radiocommunication Assembly,

considering

a) that standards development organizations (SDOs) are developing specific standards for vehicle-to-vehicle and vehicle-to-infrastructure communications in Intelligent Transport Systems (ITS);

b) that using the ITU-R Recommendation identifying these standards, manufacturers and operators should be able to determine the most suitable standards for their needs,

recommends

that the radio interface standards and technical specifications in Annexes 1 to 8 should be used for vehicle-to-vehicle and vehicle-to-infrastructure communications.

2

Table 1 provides a summary of the standards and technical specifications found in the respective Annexes.

TABLE 1

Standards and technical specifications

	Annex 1	Annex 2	Annex 3	Annex 4	Annex 5	Annex 6	Annex 7	Annex 8
Standardization/ technical specifications body	ETSI	IEEE	ARIB	TTA	IMDA	CCSA	3GPP	ATIS

NOTE – The technical characteristics of these standards and technical specifications are summarized in Annex 9.

Annex 1

ETSI standards

ETSI standards developed for the access and media layer are based on features such as:

- 5.9 GHz spectrum usage and spectrum access;
- multichannel operation;
- decentralized congestion control (DCC) and security;
- coexistence of ITS and EFC (using CEN DSRC) applications in the 5.8 GHz and 5.9 GHz bands; and
- ITS testing standards.

The technical characteristics of vehicle-to-vehicle and vehicle-to-infrastructure communications for ETSI ITS-G5 are shown in Table 2.

TABLE 2

Characteristics of the transmission scheme

Item	Transmission characteristic
Operating frequency range (MHz)	5 855-5 925
RF channel bandwidth (MHz)	10
RF Transmit Power/e.i.r.p.	Typical limit of up to 33 dBm e.i.r.p.
Modulation scheme	BPSK OFDM, QPSK OFDM, 16QAM OFDM, 64QAM OFDM
Forward error correction	Convolutional coding, rate = $1/2$, $2/3$, $3/4$
Data transmission rate (Mbit/s)	3, 4.5, 6, 9, 12, 18, 24, 27
Media access control	CSMA/CA
Duplex method	TDD

TABLE 3

Base standards for the access and media layer

Standard title	Standard number
Intelligent Transport Systems (ITS);	ETSI EN 302 571
Radiocommunications equipment operating in the 5 855 MHz to 5 925 MHz frequency band;	
Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU	
Intelligent Transport Systems (ITS);	ETSI EN 302 663
Access layer specification for Intelligent Transport Systems operating in the 5 GHz frequency band	
Intelligent Transport Systems (ITS);	ETSI TS 102 687
Decentralized Congestion Control Mechanisms for Intelligent Transport Systems operating in the 5 GHz range;	
Access layer part	
Intelligent Transport Systems (ITS); Mitigation techniques to avoid interference between European CEN Dedicated Short-Range Communication (CEN DSRC) equipment and Intelligent Transport Systems (ITS) operating in the 5 GHz frequency range	ETSI TS 102 792
Intelligent Transport Systems (ITS); Harmonized Channel Specifications for Intelligent Transport Systems (ITS) operating in the 5 GHz frequency band	ETSI TS 102 724
Intelligent Transport Systems (ITS); Cross Layer DCC Management Entity for operation in the ITS G5A and ITS G5B medium	ETSI TS 103 175

TABLE 4

Testing standards for the access and media layer

Testing Standard title	Standard number
Intelligent Transport Systems (ITS);	ETSI TS 102 917-1
Test specifications for the channel congestion control algorithms operating in the 5.9 GHz range;	
Part 1: Protocol Implementation Conformance Statement (PICS)	
Intelligent Transport Systems (ITS);	ETSI TS 102 917-2
Test specifications for the channel congestion control algorithms operating in the 5.9 GHz range;	
Part 2: Test Suite Structure and Test Purposes (TSS & TP)	
Intelligent Transport Systems (ITS);	ETSI TS 102 917-3
Test specifications for the channel congestion control algorithms operating in the 5.9 GHz range;	
Part 3: Abstract Test Suite (ATS) and partial Protocol Implementation eXtra Information for Testing (PIXIT)	
Intelligent Transport Systems (ITS);	ETSI TS 102 916-1
Test specifications for the methods to ensure coexistence of Cooperative ITS G5 with RTTT DSRC;	
Part 1: Protocol Implementation Conformance Statement (PICS)	

Testing Standard title	Standard number
Intelligent Transport Systems (ITS);	ETSI TS 102 916-2
Test specifications for the methods to ensure coexistence of Cooperative ITS G5 with RTTT DSRC;	
Part 2: Test Suite Structure and Test Purposes (TSS&TP)	
Intelligent Transport Systems (ITS);	ETSI TS 102 916-3
Test specifications for the methods to ensure coexistence of Cooperative ITS G5 with RTTT DSRC;	
Part 3: Abstract Test Suite (ATS) and partial Protocol Implementation eXtra Information for Testing (PIXIT)	

Radio interface technologies supporting Vehicle-to-Everything (V2X) communications for ITS applications have been developed as part of 3GPP technical specifications. As a founding partner of 3GPP, ETSI automatically transposes technical specifications and technical reports developed in 3GPP to ETSI deliverables. ETSI technical specifications that are transposed from 3GPP technical specifications supporting V2V and V2I communication are described in Annex 7.

TABLE 5

Base standards for security

Standard title	Standard number
Intelligent Transport Systems (ITS); Security; Security header and certificate formats	ETSI TS 103 097
Intelligent Transport Systems (ITS); Security; ITS communications security architecture and security management	ETSI TS 102 940
Intelligent Transport Systems (ITS); Security; Trust and Privacy Management	ETSI TS 102 941

The deployment of any radio interface technology based on standards listed in Tables 3, 4 and 12 has to follow the regional and national regulations.

Annex 2

IEEE standards

IEEE Standards developed for the access and media layer are based on features such as:

- 5.9 GHz spectrum usage;
- multichannel operation;
- coexistence of ITS and other existing services in the 5 850-5 925 MHz band.

The requirement for use of multi-channel wireless communications is based on IEEE Std 802.11pTM-2010 – IEEE Standard for Information technology – Local and metropolitan area networks – Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications Amendment 6: Wireless Access in Vehicular Environments, originally developed as an amendment to IEEE 802.11TM-2007 that has been incorporated into the revision of IEEE 802.11TM-2016 – IEEE Standard for Information technology – Telecommunications and information exchange between systems Local and metropolitan area networks – Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. The upper layer protocols and services requirements are described in the IEEE 1609 family of standards that use IEEE Std 802.11. Standardization of the upper layer protocols and services support the vehicle-to-vehicle and vehicle-to-roadside communication requirements of the National ITS Architecture and the Joint Program Office initiatives. Benefits for the ITS program in enabling wireless communications is for vehicle operators, dispatch centres, traffic management centres, emergency response centres, route guidance, safety and amber alerts, and response to traveller emergencies, traceable to the National ITS Architecture.

The published IEEE Std 802.11-2016 is available for free download at the IEEE Get program: http://standards.ieee.org/about/get/802/802.11.html

A list of the IEEE 1609 family of standards is as follows:

IEEE 1609.0TM-2013 – IEEE Guide for Wireless Access in Vehicular Environments (WAVE) – Architecture

IEEE 1609.2TM-2016 – IEEE Standard for Wireless Access in Vehicular Environments – Security Services for Applications and Management Messages

IEEE 1609.3TM-2016 – IEEE Standard for Wireless Access in Vehicular Environments (WAVE) – Networking Services

IEEE 1609.4TM-2016 – IEEE Standard for Wireless Access in Vehicular Environments (WAVE) – Multi-channel Operation

IEEE 1609.11TM-2010 – IEEE Standard for Wireless Access in Vehicular Environments (WAVE) – Over-the-Air Electronic Payment Data Exchange Protocol for Intelligent Transportation Systems (ITS)

IEEE 1609.12TM-2016 – IEEE Standard for Wireless Access in Vehicular Environments (WAVE) – Identifier Allocations

Annex 3

ARIB standard

In Japan, for the use of the safe driving support systems, a part of the 700 MHz band (755.5-764.5 MHz) has been assigned in a new spectrum allocation on a primary basis in the digital dividend band. The technical characteristics of vehicle-to-vehicle and vehicle-to-infrastructure communications for safe driving support systems are shown in Table 6.

TABLE 6

Characteristics of the transmission scheme

Item	Technical characteristic
Operating frequency range	755.5-764.5 MHz (Single channel)
Occupied bandwidth	Less than 9 MHz
Modulation scheme	BPSK OFDM, QPSK OFDM, 16QAM OFDM
Forward error correction	Convolutional coding, rate = $1/2$, $3/4$
Data transmission rate (Mbit/s)	3, 4.5, 6, 9, 12, 18
Media access control	CSMA/CA

Table 6 shows basic specifications of ARIB standard; ARIB STD-T109², 700 MHz band ITS which have been developed in February 2012.

A 9 MHz channel width in the 700 MHz radio frequency band will be used for the safe driving support systems.

Data transmission rate is variable based on the selection of modulation scheme and coding rate (R) as follows:

- 3 Mbit/s (BPSK OFDM, R = 1/2), 4.5 Mbit/s (BPSK OFDM, R = 3/4);
- 6 Mbit/s (QPSK OFDM/, R = 1/2), 9 Mbit/s (QPSK OFDM, R = 3/4);
- 12 Mbit/s (16QAM OFDM, R = 1/2), 18 Mbit/s (16QAM OFDM, R = 3/4).

The single channel accommodates both vehicle-to-vehicle and vehicle-to-infrastructure communications based on CSMA/CA media access control.

Annex 4

TTA standards

1 Technical characteristics

The advanced ITS radiocommunications have to consider the described V2V/V2I communications and its service requirements and WAVE standards for international harmonization. In V2V applications, it is required to consider the low packet latency because the life-saving time of safety message is useful in the span of 100 ms. Also it requires a highly activated radio channel when many vehicles try to activate radio channel simultaneously. In V2I applications, it needs to adopt the long packet transmission which includes a short message, map information and image information to be order of 2 Kbytes in a packet size in high mobility condition.

Thus the advanced ITS radiocommunications have the following features as shown in Table 7.

² ARIB standard; ARIB STD-T109, 700 MHz band intelligent transport systems (<u>https://www.arib.or.jp/english/std_tr/telecommunications/std-t109.html</u>).

TABLE 7

Technical characteristics

Item	Technical characteristic
RF frequency (MHz)	5 855-5 925
RF channel bandwidth (MHz)	10
RF Transmit power (dBm)	20
Modulation type	OFDM (BPSK, QPSK, 16QAM, 64QAM)
Data rate (Mbit/s)	3, 4.5, 6, 9, 12, 18, 24, 27
MAC	CSMA/CA, Option: Time Slot based CSMA/CA
Networking	IPv4/IPv6, VMP(WSMP compatible)
Multi-hop	Location information based routing

2 TTA Standards related to advanced ITS radiocommunications

In the Republic of Korea, Telecommunication Technology Association (TTA) established six standards for advanced ITS radiocommunications. The detailed information of these standards is shown in Table 8.

TABLE 8

Base standards related to advanced ITS radiocommunications

Standard title	Standard number
Vehicle communication system Stage 1: Requirements	TTAK.KO-06.0175/R2
Vehicle communication system Stage 2: Architecture	TTAK.KO-06.0193/R2
Vehicle communication system Stage 3: PHY/MAC	TTAK.KO-06.0216/R1
Vehicle communication system Stage 3: PHY/MAC(LTE-V2X)	TTAK.KO-06.0479
Vehicle communication system State 3: Networking	TTAK.KO-06.0234/R1
Vehicle communication system State 3: Application Protocol Interface	TTAK.KO-06.0242/R1

Radio interface technologies supporting Vehicle-to-Everything (V2X) communications for ITS applications have been developed as part of 3GPP technical specifications. As a founding partner of 3GPP, TTA regularly transposes technical specifications and technical reports developed in 3GPP to TTA technical specifications.

TTA technical specifications transposed from 3GPP technical specifications supporting V2X communication are described in Annex 7.

Annex 5

IMDA standards

Infocomm Media Development Authority of Singapore (IMDA) had set the required communication standards for ITS with the advice from the Telecommunication Standards Advisory Committee (TSAC). The detailed information of the standards could be found in IMDA TS DSRC document – Technical Specification for Dedicated Short-Range Communications in Intelligent Transport Systems.

The Specification was intended for developing ITS for improving traffic management, transportation safety and mobility, and an ITS architecture for Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications. The technical characteristics used have the following features as shown in Table 9.

TABLE 9

Characteristics of the transmission scheme

Item	Transmission characteristic	
Operating frequency range (MHz)	5 855-5 925	
RF channel bandwidth (MHz)	10	
RF Transmit Power/e.i.r.p.	Typical limit of up to 33 dBm e.i.r.p.	
Modulation scheme	BPSK OFDM, QPSK OFDM, 16QAM OFDM, 64QAM OFDM	
Forward error correction	Convolutional coding, rate = $1/2$, $2/3$, $3/4$	
Data transmission rate (Mbit/s)	3, 4.5, 6, 9, 12, 18, 24, 27	
Media access control	CSMA/CA	
Duplex method	TDD	

The DSRC use cases of the Specification may be broadly categorised as follows:

- a) Localisation;
- b) Electronic Parking Management;
- c) Traffic Signal Control Management;
- d) Traffic Information;
- e) Safety Applications;
- f) Emergency Applications;
- g) Kiosk Related Services;
- h) Other ITS Application and Services.

Annex 6

CCSA standards

China Communications Standards Association (CCSA) has finished the general technical requirements standard and air interface requirements standard of LTE-based vehicular communication (LTE-V2X), which includes V2V (Vehicle-to-Vehicle), V2I (Vehicle-to-Infrastructure), V2P(Vehicle-to-Pedestrian) and V2N (Vehicle-to-Network). The detailed standard numbers are presented in Table 10.

TABLE 10

Standards of LTE-V2X in CCSA

Standard title	Standard item number
General technical requirements of LTE-based vehicular communication	YD/T 3400-2018 ³
Technical requirements of air interface of LTE-based vehicular communication	YD/T 3340-2018 ⁴

CCSA Standards of LTE-V2X which are derived from the transposed 3GPP technical specifications listed in Table 12, Annex 7 support two operation modes, which are:

- 1) Direct communication mode between UEs in sidelink, supporting V2V, V2I and V2P, main features:
 - operating in 5.9 GHz spectrum;
 - direct communication between UEs;
 - enhanced physical layer structure;
 - enhanced resource allocation mechanism supporting distributed mode (Mode 4) and centralized mode (Mode 3);
 - synchronization procedure with Global Navigation Satellite System (GNSS) and/or eNB;
 - decentralized congestion control;
 - vehicle-to-pedestrian transmission with power saving.
- 2) Cellular communication mode between UE and eNB in uplink/downlink, supporting V2N and also supporting V2V/V2I/V2P via cellular network relay. Main enhanced features comparing with traditional cellular communication:
 - shorter repetition/modification period for Multimedia Broadcast Multicast Service (MBMS) in downlink;
 - multiple Semi-Persistent Scheduling (SPS) configuration in uplink.

The technical characteristics of LTE-V2X standards in CCSA are summarized in Table 11.

³ <u>http://www.ptsn.net.cn/standard/std_query/show-yd-5502-1.htm.</u>

⁴ <u>http://www.ptsn.net.cn/standard/std_query/show-yd-5394-1.htm.</u>

TABLE 11

Technical characteristics of LTE-V2X standards in CCSA

Parameter	Technical characteristic ⁵			
	Direct communication mode	Cellular communication mode		
Operating frequency range	5 855-5 925 MHz Note: China officially approved 5 905-5 925 MHz for LTE-V2X.	The bands used in combination with direct communication mode. For FDD UL: 1710-1785 MHz; DL: 1 805-1 880 MHz UL: 880-915 MHz; DL: 925-960 MHz For TDD 1 880-1 920 MHz 2 496-2 690 MHz		
RF channel bandwidth	10/20 MHz	1.4/3/5/10/15/20 MHz		
RF transmit power/e.i.r.p.	Maximum 23 dBm	Maximum 23 dBm		
Modulation scheme	QPSK SC-FDM, 16QAM SC-FDM	UL: QPSK SC-FDM, 16QAM SC-FDM, 64QAM SC-FDM, 256QAM SC-FDM DL: QPSK OFDM, 16QAM OFDM, 64QAM OFDM, 256QAM OFDM		
Forward error correction	For control channel: Tail biting convolutional coding, rate = 1/8. For data channel: Turbo coding with rate up to 0.86. Rate can be controlled with a fine granularity.	UCI (Uplink Control Information): Tail biting convolutional coding / Block code UL-SCH (Uplink Shared channel): Turbo coding DCI (Downlink Control Information): Tail biting convolutional coding DL-SCH (Downlink Shared channel): Turbo coding MCH (Multicast channel):Turbo coding		
Data transmission rate	Up to 15.8 Mbit/s for 10 MHz channel bandwidth. Up to 31.7 Mbit/s for 20 MHz channel bandwidth. Rate can be controlled with a fine granularity.	Unicast: UL: Maximum 105.5 Mbit/s for 20 MHz; 78.7 Mbit/s for 15 MHz; 52.7 Mbit/s for 10 MHz; 26.4 Mbit/s for 5 MHz. DL with one layer: Maximum 97.9 Mbit/s for 20 MHz; 75.4 Mbit/s for 15 MHz; 48.9 Mbit/s for 10 MHz; 24.5 Mbit/s for 5 MHz. DL with two layers: Maximum 195.8 Mbit/s for 20 MHz; 149.8 Mbit/s for 15 MHz; 97.9 Mbit/s for 10 MHz; 48.9 Mbit/s for 5 MHz. Broadcast: Maximum 60% of unicast.		

⁵ The deployment of any radio interface technology in China based on standards has to follow the Chinese national regulations.

Parameter	Technical characteristic ⁵			
	Direct communication mode	Cellular communication mode		
Media access control	For Mode4: Sensing with semi persistent transmission, random selection. For Mode3: eNB scheduling.	eNB scheduling		
Duplex method	TDD	TDD/FDD		
Resource multiplexing across UEs	Frequency Division Multiplexing (FDM) and Time Division Multiplexing (TDM)	Frequency Division Multiplexing (FDM) and Time Division Multiplexing (TDM)		
Retransmission	Hybrid Automatic Repeat Request (HARQ)	Hybrid Automatic Repeat Request (HARQ)		

TABLE 11 (end)

Annex 7

3GPP technical specifications

For Intelligent Transport Systems, 3GPP has developed its technical specifications for vehicle-toeverything (V2X), which includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicleto-pedestrian (V2P), vehicle-to-network (V2N), as a part of the Long Term Evolution (LTE) specifications from Release 14. 3GPP technical specifications for V2X cover physical layer signals/channels, medium access and radio resource management protocols, radio access network, core network and user equipment (UE) protocol, security, use cases and service requirements, and device performance requirements.

3GPP technical specifications support two different interfaces for V2X communications. One is the Uu interface which provides communication between the cellular network, road infrastructure, pedestrians and vehicles using uplink and downlink via eNB. The other is the PC5 interface which has been developed to provide direct communication among vehicles and road infrastructure. The Uu interface always uses centralized scheduling which means that base station (eNB) controls medium access and radio resource management. The PC5 interface supports two scheduling options; one is the centralized scheduling similar to that used for the Uu interface and the other is distributed scheduling where each vehicle on its own determines the suitable time and frequency resources to use for its transmissions. It is noted that the PC5 interface with distributed scheduling can operate both inside and outside cellular coverage and does not require cellular operator support. While the PC5 interface only supports broadcast transmissions, the Uu interface supports unicast, multicast, and broadcast transmissions.

The LTE downlink uses orthogonal frequency division multiple access (OFDMA), and the LTE uplink and PC5 interfaces use single-carrier frequency division multiple access (SC-FDMA).

Frequency bands envisaged for the LTE-V2X Uu interface and the PC5 interface⁶ are found in Table 13.

All 3GPP technical specifications listed in Table 12 have been transposed by 3GPP Organizational Partners⁷ into their relevant deliverables (e.g. standards). The detailed standards transposed by 3GPP Organizational Partners are listed in Table 12.

TABLE 12

List of the 3GPP technical specifications and transposed standards related to V2X

	Reference	Standard number			
Specifications title	number	ATIS	CCSA ⁸	ETSI	ТТА
<core and="" network="" proto<="" th="" ue=""><th>ocol></th><th></th><th></th><th></th><th></th></core>	ocol>				
Service requirements for V2X service	3GPP TS 22.185	ATIS.3GPP.TS 22.185V1430	CCSA TS 22.185 v14.3.0	ETSI TS 122 185	TTAT.3G- 22.185(R14- 14.3.0)
<core and="" network="" proto<="" td="" ue=""><td>ocol></td><td></td><td></td><td></td><td></td></core>	ocol>				
Numbering, addressing and identification	3GPP TS 23.003	ATIS.3GPP.TS 23.003V1460	CCSA TS 23.003 v14.6.0	ETSI TS 123 003	TTAT.3G- 23.003(R14- 14.5.0)
Restoration procedures.	3GPP TS 23.007	ATIS.3GPP.TS 23.007V1440	CCSA TS 23.007 v14.4.0	ETSI TS 123 007	TTAT.3G- 23.007(R14- 14.3.0)
Organization of subscriber data	3GPP TS 23.008	ATIS.3GPP.TS 23.008V1440	CCSA TS 23.008 v14.4.0	ETSI TS 123 008	TTAT.3G- 23.008(R14- 14.3.0)
Non-Access-Stratum (NAS) functions related to Mobile Station (MS) in idle mode	3GPP TS 23.122	ATIS.3GPP.TS 23.122V1440	CCSA TS 23.122 v14.4.0	ETSI TS 123 122	TTAT.3G- 23.122(R14- 14.4.0)
Policy and charging control architecture	3GPP TS 23.203	ATIS.3GPP.TS 23.203V1450	CCSA TS 23.203 v14.5.0	ETSI TS 123 203	TTAT.3G- 23.203(R14- 14.5.0)
Architecture enhancements for V2X service	3GPP TS 23.285	ATIS.3GPP.TS 23.285V1450	CCSA TS 23.285 v14.5.0	ETSI TS 123 285	TTAT.3G- 23.285(R14- 14.4.0)
Proximity-based services (ProSe); Stage 2	3GPP TS 23.303	ATIS.3GPP.TS 23.303V1410	CCSA TS 23.303 v14.1.0	ETSI TS 123 303	TTAT.3G- 23.303(R14- 14.1.0)
Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3	3GPP TS 24.301	ATIS.3GPP.TS 24.301V1460	CCSA TS 24.301 v14.6.0	ETSI TS 124 301	TTAT.3G- 24.301(R14- 14.5.0)
Proximity-services (ProSe) User Equipment (UE) to Proximity-services (ProSe) Function Protocol aspects; Stage 3	3GPP TS 24.334	ATIS.3GPP.TS 24.334V1400	CCSA TS 24.334 v14.0.0	ETSI TS 124 334	TTAT.3G- 24.334(R14- 14.0.0)

⁶ The published 3GPP technical specifications are available at 3GPP Portal: <u>http://www.3gpp.org/ftp/Specs</u>.

⁷ The Organizational Partners of 3GPP are ARIB, ATIS, CCSA, ETSI, TSDSI, TTA and TTC (<u>http://www.3gpp.org/partners</u>).

⁸ http://www.ccsa.org.cn/english/files.php?docpath=/ITU-R/M.1457/M.1457-14/DS/Rel-14.

TABLE 12	(continued)
----------	-------------

	Reference	Standard number			
specifications the	number	ATIS	CCSA ⁸	ETSI	ТТА
V2X services Management Object (MO)	3GPP TS 24.385	ATIS.3GPP.TS 24.385V1430	CCSA TS 24.385 v14.3.0	ETSI TS 124 385	TTAT.3G- 24.385(R14- 14.2.0)
User Equipment (UE) to V2X control function; protocol aspects; Stage 3	3GPP TS 24.386	ATIS.3GPP.TS 24.386V1430	CCSA TS 24.386 v14.3.0	ETSI TS 124 386	TTAT.3G- 24.386(R14- 14.2.0)
Representational state transfer over xMB reference point between content provider and BM-SC	3GPP TS 29.116	ATIS.3GPP.TS 29.116V1430	CCSA TS 29.116 v14.3.0	ETSI TS 129 116	TTAT.3G- 29.116(R14- 14.2.0)
Policy and Charging Control (PCC); Reference points	3GPP TS 29.212	ATIS.3GPP.TS 29.212V1460	CCSA TS 29.212 v14.6.0	ETSI TS 129 212	TTAT.3G- 29.212(R14- 14.5.0)
Evolved Packet System (EPS); Mobility Management Entity (MME) and Serving GPRS Support Node (SGSN) related interfaces based on Diameter protocol	3GPP TS 29.272	ATIS.3GPP.TS 29.272V1460	CCSA TS 29.272 v14.6.0	ETSI TS 129 272	TTAT.3G- 29.272(R14- 14.5.0)
V2X Control Function to Home Subscriber Server (HSS) aspects (V4); Stage 3	3GPP TS 29.388	ATIS.3GPP.TS 29.388V1410	CCSA TS 29.388 v14.1.0	ETSI TS 129 388	TTAT.3G- 29.388(R14- 14.1.0)
Inter-V2X Control Function Signalling aspects (V6); Stage 3	3GPP TS 29.389	ATIS.3GPP.TS 29.389V1410	CCSA TS 29.389 v14.1.0	ETSI TS 129 389	TTAT.3G- 29.389(R14- 14.1.0)
Group Communication System Enablers for LTE (GCSE_LTE); MB2 reference point; Stage 3	3GPP TS 29.468	ATIS.3GPP.TS 29.468V1430	CCSA TS 29.468 v14.3.0	ETSI TS 129 468	TTAT.3G- 29.468(R14- 14.2.0)
Characteristics of the Universal Subscriber Identity Module (USIM) application	3GPP TS 31.102	ATIS.3GPP.TS 31.102V1440	CCSA TS 31.102 v14.4.0	ETSI TS 131 102	TTAT.3G- 31.102(R14- 14.3.0)
<security></security>					
Security aspect for LTE support of V2X services	3GPP TS 33.185	ATIS.3GPP.TS 33.185V1410	CCSA TS 33.185 v14.1.0	ETSI TS 133 185	TTAT.3G- 33.185(R14- 14.1.0)
<device performance="" requirements=""></device>					
Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception	3GPP TS 36.101	ATIS.3GPP.TS 36.101V1460	CCSA TS 36.101 v14.6.0	ETSI TS 136 101	TTAT.3G- 36.101(R14- 14.5.0)
Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management	3GPP TS 36.133	ATIS.3GPP.TS 36.133V1460	CCSA TS 36.133 v14.6.0	ETSI TS 136 133	TTAT.3G- 36.133(R14- 14.5.0)
<physical aspects="" layer=""></physical>					

Smaaifi aadi ama didla	Reference	Standard number			
Specifications the	number	ATIS	CCSA ⁸	ETSI	TTA
Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation	3GPP TS 36.211	ATIS.3GPP.TS 36.211V1450	CCSA TS 36.211 v14.5.0	ETSI TS 136 211	TTAT.3G- 36.211(R14- 14.4.0)
Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding	3GPP TS 36.212	ATIS.3GPP.TS 36.212V1451	CCSA TS 36.212 v14.5.1	ETSI TS 136 212	TTAT.3G- 36.212(R14- 14.4.0)
Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures	3GPP TS 36.213	ATIS.3GPP.TS 36.213V1450	CCSA TS 36.213 v14.5.0	ETSI TS 136 213	TTAT.3G- 36.213(R14- 14.4.0)
Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer; Measurements	3GPP TS 36.214	ATIS.3GPP.TS 36.214V1440	CCSA TS 36.214 v14.4.0	ETSI TS 136 214	TTAT.3G- 36.214(R14- 14.3.0)
<medium access="" and="" radio="" re<="" td=""><td>esource managen</td><td>nent protocols></td><td></td><td></td><td></td></medium>	esource managen	nent protocols>			
Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2	3GPP TS 36.300	ATIS.3GPP.TS 36.300V1450	CCSA TS 36.300 v14.5.0	ETSI TS 136 300	TTAT.3G- 36.300(R14- 14.4.0)
Evolved Universal Terrestrial Radio Access (E-UTRA); Services provided by the physical layer	3GPP TS 36.302	ATIS.3GPP.TS 36.302V1440	CCSA TS 36.302 v14.4.0	ETSI TS 136 302	TTAT.3G- 36.302(R14- 14.3.0)
Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode	3GPP TS 36.304	ATIS.3GPP.TS 36.304V1450	CCSA TS 36.304 v14.5.0	ETSI TS 136 304	TTAT.3G- 36.304(R14- 14.4.0)
Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio access capabilities	3GPP TS 36.306	ATIS.3GPP.TS 36.306V1450	CCSA TS 36.306 v14.5.0	ETSI TS 136 306	TTAT.3G- 36.306(R14- 14.4.0)
Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification	3GPP TS 36.321	ATIS.3GPP.TS 36.321V1400	CCSA TS 36.321 v14.5.0	ETSI TS 136 321	TTAT.3G- 36.321(R14- 14.4.0)
Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Link Control (RLC) protocol specification	3GPP TS 36.322	ATIS.3GPP.TS 36.322V1450	CCSA TS 36.322 v14.1.0	ETSI TS 136 322	TTAT.3G- 36.322(R14- 14.1.0)
Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Convergence Protocol (PDCP) specification	3GPP TS 36.323	ATIS.3GPP.TS 36.323V1410	CCSA TS 36.323 v14.5.0	ETSI TS 136 323	TTAT.3G- 36.323(R14- 14.4.0)
Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification	3GPP TS 36.331	ATIS.3GPP.TS 36.331V1451	CCSA TS 36.331 v14.5.1	ETSI TS 136 331	TTAT.3G- 36.331(R14- 14.4.0)

TABLE 12 (end)

	Reference	Standard number			
Specifications the	number	ATIS	CCSA ⁸	ETSI	ТТА
<radio access="" aspec<="" network="" th=""><th>ets></th><th></th><th>•</th><th>•</th><th></th></radio>	ets>		•	•	
Evolved Universal Terrestrial Radio Access Network (E- UTRAN); M2 Application Protocol (M2AP)	3GPP TS 36.443	ATIS.3GPP.TS 36.443V1401	CCSA TS 36.443 v14.0.1	ETSI TS 136 443	TTAT.3G- 36.443(R14- 14.0.1)
Evolved Universal Terrestrial Radio Access Network (E- UTRAN); S1 Application Protocol (S1AP)	3GPP TS 36.413	ATIS.3GPP.TS 36.413V1441	CCSA TS 36.413 v14.4.1	ETSI TS 136 413	TTAT.3G- 36.413(R14- 14.4.0)
Evolved Universal Terrestrial Radio Access Network (E- UTRAN); X2 application protocol (X2AP)	3GPP TS 36.423	ATIS.3GPP.TS 36.423V1450	CCSA TS 36.423 v14.5.0	ETSI TS 136 423	TTAT.3G- 36.423(R14- 14.4.0)

TABLE 13

Characteristics of the transmission scheme

Transmission characteristic			
Uu interface	PC5 interface		
All the bands specified in TS 36.101^9 support operation with the Uu interface, except Band 47. Bands for Uu interface when used in combination with PC5. Band 3: UL: 1 710-1 785 MHz DL: 1 805-1 880 MHz Band 5: UL: 824 MHz – 849 MHz DL: 869 MHz – 894 MHz Band 7: UL: 2 500-2 570 MHz DL: 2 620-2 690 MHz Band 8: UL: 880-915 MHz DL: 925-960 MHz Band 20: UL: 832 MHz – 862 MHz DL: 791 MHz – 821 MHz Band 28: UL: 703 MHz –	For Rel-14 Band 47: 5 855-5 925 MHz		
	TransmissiUu interfaceAll the bands specified in TS 36.101^9 support operation with the Uu interface, except Band 47.Bands for Uu interface when used in combination with PC5.Band 3: UL: 1 710-1 785 MHz DL: 1 805-1 880 MHzBand 3: UL: 1 710-1 785 MHz DL: 1 805-1 880 MHzBand 3: UL: 1 710-1 785 MHz DL: 1 805-1 880 MHzBand 5: UL: 824 MHz – 849 MHzBand 5: UL: 824 MHz – 849 MHzDL: 869 MHz DL: 2 500-2 570 MHz DL: 2 620-2 690 MHzBand 7: UL: 2 500-2 570 MHz DL: 925-960 MHzBand 8: UL: 880-915 MHz DL: 925-960 MHzBand 20: UL: 832 MHz – 862 MHzDL: 791 MHz – 821 MHzBand 28: UL: 703 MHz – 748 MHz		

⁹ TS 36.101 "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception" <u>http://www.3gpp.org/DynaReport/36-series.htm</u>.

Item	Transmission characteristic			
	Uu interface	PC5 interface		
	DL: 758 MHz – 803 MHz Band 34: UL: 2 010 MHz – 2 025 MHz DL: 2 010 MHz			
	2 025 MHz			
	Band 39: 1 880-1 920 MHz Band 41: 2 496-2 690 MHz			
	Band 71: UL: 663 MHz – 698 MHz DL: 617 MHz – 652 MHz			
RF channel bandwidth	1.4, 3, 5, 10, 15, or 20 MHz per channel	10 or 20 MHz per channel		
RF Transmit Power/e.i.r.p.	Max 43 dBm for eNB Max 23 or 33 dBm for UE	Max 23 or 33 dBm		
Modulation scheme	Uplink: QPSK SC-FDMA, 16QAM SC-FDMA, 64QAM SC-FDMA; Downlink: QPSK OFDMA, 16QAM OFDMA, 64QAM OFDMA	QPSK SC-FDMA, 16QAM SC-FDMA		
Forward error correction	Convolutional coding and turbo coding	Convolutional coding and turbo coding		
Data transmission rate	Uplink: From 1.4 Mbit/s to 36.7 Mbit/s for 10 MHz channel Downlink: From 1.4 Mbit/s to 75.4 Mbit/s for 10 MHz channel	From 1.3 Mbit/s to 15.8 Mbit/s for 10 MHz channel		
Media access control	Centralized scheduling by eNB	Centralized scheduling or distributed scheduling		
Duplex method	FDD or TDD	TDD		

Annex 8

ATIS Standards

3GPP Intelligent Transport Systems technical specifications have been transposed and standardized by ATIS for vehicle-to-everything (V2X), which includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), vehicle-to-network (V2N), as a part of

the Long Term Evolution (LTE) Release 14. ATIS standards that are transposed from 3GPP technical specifications supporting V2X communications are described in Annex 7.

Frequency bands envisaged for the LTE-V2X Uu interface and the PC5 interface¹⁰ are found in Table 14.

TABLE 14

Characteristics of the transmission scheme

Item	Transmission Characteristic		
	Uu interface	PC5 interface	
Operating frequency range	Bands for Uu interface when used in combination with PC5, for Rel-14	For Rel-14 Band 47: 5 855-5 925 MHz	
	Band 3: UL: 1 710-1 785 MHz DI : 1 805-1 880 MHz		
	Band 7: UL: 2 500-2 570 MHz		
	DL: 2 620-2 690 MHz Band 8: UL: 880-915 MHz		
	DL: 925-960 MHz		
	Band 39: 1 880-1 920 MHz Band 41: 2 496-2 690 MHz		
RF channel bandwidth	1.4, 3, 5, 10, 15, or 20 MHz per channel	10 or 20 MHz per channel	
RF Transmit	Max 43 dBm for eNB		
Power/e.i.r.p.	Max 23 or 33 dBm for UE	Max 23 or 33 dBm	
Modulation scheme	Uplink: QPSK SC-FDMA, 16QAM SC-FDMA, 64QAM SC-FDMA; Downlink: QPSK OFDMA, 16QAM OFDMA, 64QAM OFDMA	QPSK SC-FDMA, 16QAM SC-FDMA	
Forward error correction	Convolutional coding and turbo coding	Convolutional coding and turbo coding	
Data transmission rate	Uplink: From 1.4 Mbit/s to 36.7 Mbit/s for 10 MHz channel Downlink: From 1.4 Mbit/s to	From 1.3 Mbit/s to 15.8 Mbit/s for 10 MHz channel	
	75.4 Mbit/s for 10 MHz channel		
Media access control	Centralized scheduling by eNB	centralized scheduling or distributed scheduling	
Duplex method	FDD or TDD	TDD	

¹⁰ The published ATIS standards are available at: <u>https://www.atis.org/docstore/default.aspx</u> .

Annex 9

Summary of the technical characteristics of the standards and technical specifications

Technical characteristics of each standard and technical specifications are shown in Table 15.

TABLE 15

Parameter	ETSI	ETSI (Annex 7, Table 12) ¹¹	
	(Annex 1, Table 3 and Table 4)	Uu interface	PC5 interface
Operating frequency range	5 855-5 925 MHz	All the bands specified in ETSI TS 136 101^{12} support operation with the Un interface, except band 47. Bands for Uu interface when used in combination with PC5 ¹³ Band 3: UL: 1 710-1 785 MHz DL: 1 805-1 880 MHz Band 5: UL: 824 MHz – 849 MHz DL: 869 MHz – 894 MHz DL: 869 MHz – 894 MHz Band 7: UL: 2 500-2 570 MHz DL: 2 620-2 690 MHz Band 8: UL: 880-915 MHz DL: 925-960 MHz Band 20: UL: 832 MHz – 862 MHz DL: 791 MHz – 821 MHz Band 28: UL: 703 MHz – 748 MHz DL: 758 MHz – 803 MHz Band 34: UL: 2010 MHz – 2 025 MHz DL: 2010 MHz – 2 025 MHz Band 39: UL: 1 880-1 920 MHz DL: 1 880-1 920 MHz Band 41: UL: 2 496-2 690 MHz	For Rel-14 and Rel-15 Band 47: 5 855- 5 925 MHz
		DL: 2 496-2 690 MHz	

Technical characteristics

¹¹ The deployment of any radio interface technology based on standards has to follow the regional and national regulations.

¹² ETSI TS 136 101 V15.4.0 (2019-01) LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 15.4.0 Release 15), clause 5.5. <u>https://www.etsi.org/deliver/etsi_ts/136100_136199/136101/15.04.00_60/ts_136101v150400p.pdf</u>.

¹³ ETSI TS 136 101 V15.4.0 (2019-01) LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 15.4.0 Release 15), clause 5.5G. <u>https://www.etsi.org/deliver/etsi_ts/136100_136199/136101/15.04.00_60/ts_136101v150400p.pdf</u>.

TABLE 15 (continued)

Parameter	ETSI	ETSI (Annex 7, Table 12) ¹¹	
	(Annex 1, Table 3 and Table 4)	Uu interface	PC5 interface
		Band 71: UL: 663 MHz – 698 MHz DL: 617 MHz – 652 MHz	
RF channel bandwidth	10 MHz	1.4, 3, 5, 10, 15, or 20 MHz per channel	10 or 20 MHz per channel (10+10 MHz and 10+20 MHz carrier aggregation are supported)
RF Transmit Power/e.i.r.p.	Max 33 dBm e.i.r.p.	Max 43 dBm for eNB Max 23 or 33 dBm for UE	Max 23 or 33 dBm
RF transmit power density			
Modulation scheme	BPSK OFDM, QPSK OFDM, 16QAM OFDM, 64QAM OFDM	Uplink: QPSK SC-FDMA, 16QAM SC-FDMA, 64QAM SC-FDMA; Downlink: QPSK OFDMA, 16QAM OFDMA, 64QAM OFDMA	QPSK SC-FDMA, 16QAM SC-FDMA 64QAM SC-FDMA
Forward error correction	Convolutional coding, rate = $1/2$, $3/4$, $2/3$	Convolutional coding and turbo coding	Convolutional coding and turbo coding
Data transmission rate	3 Mbit/s, 4.5 Mbit/s, 6 Mbit/s, 9 Mbit/s, 12 Mbit/s, 18 Mbit/s, 24Mbit/s, 27Mbit/s	Uplink: From 1.4 Mbit/s to 36.7 Mbit/s for 10 MHz channel Downlink: From 1.4 Mbit/s to 75.4 Mbit/s for 10 MHz channel	From 1.3 Mbit/s to 24.5 Mbit/s for 10 MHz channel
Media access control	CSMA/CA	Centralized scheduling by eNB	Centralized scheduling or distributed scheduling
Duplex method	TDD	FDD or TDD	TDD

Parameter	IEEE (Annex 2)	ARIB (Annex 3)	TTA (Annex 4)	IMDA (Annex 5)
Operating frequency range	5 850-5 925 MHz	755.5-764.5 MHz (Single channel)	5 855-5 925 MHz	5 855-5 925 MHz
RF channel bandwidth	10 MHz or 20 MHz	Less than 9 MHz	Less than 10 MHz	10 MHz
RF Transmit Power/e.i.r.p.		_	20 dBm	Typical limit of up to 33 dBm e.i.r.p.
RF transmit power density		10 dBm/MHz		

Parameter	IEEE (Annex 2)	ARIB (Annex 3)	TTA (Annex 4)	IMDA (Annex 5)
Modulation scheme	64-QAM-OFDM 16-QAM-OFDM QPSK-OFDM BPSK-OFDM 52 subcarriers	BPSK OFDM, QPSK OFDM, 16QAM OFDM	BPSK OFDM, QPSK OFDM, 16QAM OFDM, 64QAM	BPSK OFDM, QPSK OFDM, 16QAM OFDM, 64QAM OFDM
Forward error correction	Convolutional coding, rate = $1/2$, $3/4$	Convolutional coding, rate = $1/2$, $3/4$	Convolutional coding, rate = $1/2$, $3/4$	Convolutional coding, rate = $1/2$, $2/3$, $3/4$
Data transmission rate	3, 4.5, 6, 9, 12, 18, 24 and 27 Mbit/s for 10 MHz channel spacing 6, 9, 12, 18, 24, 36, 48 and 54 Mbit/s for 20 MHz channel spacing	3 Mbit/s, 4.5 Mbit/s, 6 Mbit/s, 9 Mbit/s, 12 Mbit/s, 18 Mbit/s	3, 4.5, 6, 9, 12, 18, 24, 27 Mbit/s	3 Mbit/s, 4.5 Mbit/s, 6 Mbit/s, 9 Mbit/s, 12 Mbit/s, 18 Mbit/s, 24Mbit/s, 27 Mbit/s
Media access control	CSMA/CA	CSMA/CA	CSMA/CA	CSMA/CA
Duplex method	TDD	TDD	TDD	TDD

Parameter	CCSA (Annex 6) ¹⁴		
	Cellular communication mode	Cellular communication mode	
Operating frequency range	The bands used in combination with direct communication mode.	The bands used in combination with direct communication mode.	
	For FDD	For FDD	
	UL: 1 710-1 785 MHz; DL: 1 805-1 880 MHz	UL: 1 710-1 785 MHz; DL: 1 805-1 880 MHz	
	UL: 880-915 MHz;	UL: 880-915 MHz;	
	DL: 925-960 MHz	DL: 925-960 MHz	
	For TDD 1 880-1 920 MHz 2 496-2 690 MHz	For TDD 1 880-1 920 MHz 2 496-2 690 MHz	
RF channel bandwidth	1.4/3/5/10/15/20 MHz	1.4/3/5/10/15/20 MHz	
RF Transmit Power/e.i.r.p.	Maximum 23 dBm	Maximum 23 dBm	
RF transmit power density			
Modulation scheme	QPSK SC-FDM, 16QAM SC-FDM, 64QAM SC-FDM, 256QAM SC-FDM	QPSK SC-FDM, 16QAM SC-FDM, 64QAM SC-FDM, 256QAM SC-FDM	

¹⁴ The deployment of any radio interface technology in China based on standards has to follow the Chinese national regulations.

Parameter	CCSA (Annex 6) ¹⁴		
	Cellular communication mode	Cellular communication mode	
Forward error correction	PUCCH (Physical Uplink Control channel): Tail biting convolutional coding / Block code PUSCH (Physical Uplink Shared channel): Turbo coding	PUCCH (Physical Uplink Control channel): Tail biting convolutional coding / Block code PUSCH (Physical Uplink Shared channel): Turbo coding	
Data transmission rate	Maximum 105.5 Mbits	Maximum 105.5 Mbits	
Media access control	eNB scheduling	eNB scheduling	
Duplex method	TDD/FDD	TDD/FDD	

Parameter	3GPP (Annex 7)		
	Uu interface	Uu interface	
Operating frequency range	Bands for Uu interface when used in combination with PC5	Bands for Uu interface when used in combination with PC5	
	Band 3: UL: 1 710-1 785 MHz	Band 3: UL: 1 710-1 785 MHz	
	DL: 1 805-1 880 MHz	DL: 1 805-1 880 MHz	
	Band 5: UL: 824 MHZ – 849 MHZ	Band 5: UL: $824 \text{ MHz} - 849 \text{ MHz}$	
	DL: 809 MHZ – 894 MHZ Pond 7: 10 - 2 500 2 570 MHz	DL: 809 MHZ – 894 MHZ Bond 7: JU : 2,500 2,570 MHz	
	DI \cdot 2 620 2 600 MHz	DI : 2 620 2 600 MHz	
	Band 8: 111 : 880 015 MHz	Band 8: 111 : 880 015 MHz	
	DI · 925-960 MHz	DI · 925-960 MHz	
	Band 20: $III : 832 \text{ MHz} = 862 \text{ MHz}$	Band 20: $III : 832 \text{ MHz} = 862 \text{ MHz}$	
	DL: 791 MHz - 821 MHz	DL: 791 MHz - 821 MHz	
	Band 28: UL: 703 MHz – 748 MHz	Band 28: UL: 703 MHz – 748 MHz	
	DL: 758 MHz – 803 MHz	DL: 758 MHz – 803 MHz	
	Band 34: UL: 2 010 MHz – 2 025 MHz	Band 34: UL: 2 010 MHz – 2 025 MHz	
	DL: 2 010 MHz – 2 025 MHz	DL: 2 010 MHz – 2 025 MHz	
	Band 39: 1 880-1 920 MHz	Band 39: 1 880-1 920 MHz	
	Band 41: 2 496-2 690 MHz	Band 41: 2 496-2 690 MHz	
	Band 71: UL: 663 MHz – 698 MHz	Band 71: UL: 663 MHz – 698 MHz	
	DL: 617 MHz – 652 MHz	DL: 617 MHz – 652 MHz	
RF channel bandwidth	1.4, 3, 5, 10, 15, or 20 MHz per channel	1.4, 3, 5, 10, 15, or 20 MHz per channel	
RF Transmit	Max 43 dBm for eNB	Max 43 dBm for eNB	
Power/e.i.r.p.	Max 23 or 33 dBm for UE	Max 23 or 33 dBm for UE	
RF transmit power density			
Modulation scheme	Uplink: QPSK SC-FDMA, 16QAM SC-FDMA, 64QAM SC-FDMA;	Uplink: QPSK SC-FDMA, 16QAM SC-FDMA, 64QAM SC-FDMA;	
	Downlink: QPSK OFDMA, 16QAM OFDMA, 64QAM OFDMA	Downlink: QPSK OFDMA, 16QAM OFDMA, 64QAM OFDMA	
Forward error correction	Convolutional coding and turbo coding	Convolutional coding and turbo coding	

Parameter	3GPP (Annex 7)		
	Uu interface	Uu interface	
Data transmission rate	Uplink: From 1.4 Mbit/s to 36.7 Mbit/s for 10 MHz channel Downlink: From 1.4 Mbit/s to 75.4 Mbit/s for 10 MHz channel	Uplink: From 1.4 Mbit/s to 36.7 Mbit/s for 10 MHz channel Downlink: From 1.4 Mbit/s to 75.4 Mbit/s for 10 MHz channel	
Media access control	Centralized scheduling by eNB	Centralized scheduling by eNB	
Duplex method	FDD or TDD	FDD or TDD	

Parameter	ATIS (Annex 8)		
	Uu interface	PC5 interface	
Operating frequency range	Bands for Uu interface when used in combination with PC5, for Rel-14 Band 5: UL: 824-849 MHz DL: 869-894 MHz Band 7: UL: 2 500-2 570 MHz DL: 2 620-2 690 MHz Band 41: 2 496-2 690 MHz Band 71: UL: 663-698 MHz DL: 617-652 MHz	For Rel-14 Band 47: 5 855-5 925 MHz	
RF channel bandwidth	1.4, 3, 5, 10, 15, or 20 MHz per channel	10 or 20 MHz per channel	
RF Transmit Power/e.i.r.p.	Max 43 dBm for eNB Max 23 or 33 dBm for UE	Max 23 or 33 dBm	
RF transmit power density			
Modulation scheme	Uplink: QPSK SC-FDMA, 16QAM SC-FDMA, 64QAM SC-FDMA; Downlink: QPSK OFDMA, 16QAM OFDMA, 64QAM OFDMA	QPSK SC-FDMA, 16QAM SC-FDMA	
Forward error correction	Convolutional coding and turbo coding	Convolutional coding and turbo coding	
Data transmission rate	Uplink: From 1.4 Mbit/s to 36.7 Mbit/s for 10 MHz channel Downlink: From 1.4 Mbit/s to 75.4 Mbit/s for 10 MHz channel	From 1.3 Mbit/s to 15.8 Mbit/s for 10 MHz channel	
Media access control	Centralized scheduling by eNB	Centralized scheduling or distributed scheduling	
Duplex method	FDD or TDD	TDD	