UWB Channel Soundings and Models — Literature Overview

Abstract

The following is the reproduction of an exhaustive UWB literature list compiled by Jürgen Kunisch and Jörg Pamp, IMST GmbH, presented at the International Workshop on Ultra-Wideband Systems 2003 in Oulu, Finland [1], slightly updated by Ulrich Schuster, ETH Zürich.

I. CHANNEL MEASUREMENTS

Source	Frequency Range in GHz	Bandwidth in GHz	Environment	Distance in m	Antennas
AT&T Labs	4.375–5.625	1.25	residential	1–15	conical monopole
[2]					dual receive
Ultrawaves	2-8	6	indoor	1.5–13	conical
[3]					
Whyless	1–11	10	office	3–10	biconical
[4]					
France Telecom R&D	46	2	office	2.6–16.6	dipole
[5], [6]					
U.C.A.N.	1–9	8 (2 × 4)	lab/office/corridor	1–18	biconical
[7], [8]					
U.C.A.N	26	4	lab/office/flat	1-20	conical monopole
[7]–[10]					
Stanford U.	0.001-1.8	1.799	lab	0.6–10	?
[11]					
Intel R&D	2–8	6	residential	1–20	biconical
[12]–[14]					dual receive
Intel R&D	28	6	residential	?	?
[15]	same measurements as [12]-[14] ?				
Pacwoman	1.5–6	4.5	seminar room	2 & 5	various low-cost antennas
[16]					focus on antenna influence
Time-Domain Corporation	1–3	2	remote-to-body LOS	5	diamond dipole
[17]					
IKT, ETH Zurich	2–6	4	human body	0-1	meander-line antenna
[18]			measured in office		
			and anech. chamber		
Tokyo Denki University	3.1–10.6	7.5	metal desk	0.1-0.7	volcano-smoke
[19]					monopole
NJIT	2–6	4	classroom / lab LOS	1–10	conical monopole
[20]			directional and omni		log-periodic
			antennas		

TABLE I VECTOR NETWORK ANALYZER MEASUREMENTS

TABLE II DIGITAL SAMPLING OSCILLOSCOPE MEASUREMENTS

Source	Frequency Range in GHz	Bandwidth in GHz	Environment	Distance in m	Antennas
Time-Domain Corp	3-5 (-3dB BW)	2	residential/office	0–10	omnidirectional
[21]					
Time-Domain Corp/USC		1.3	lab/office	3–13.5	diamond dipole
[22], [23]					
Intel R&D	2-8	6	residential	1–20	biconical
[13], [14]	(digital BPF on pulse spectrum)			dual receive	
Stanford U.	?	?	lab	0.6–10	?
[11]					
Time-Domain Corp.	?	?	indoor	?	?
(pulse-scanning receiver)					
[24]–[26]					
Virginia Polytech	0.1–12 (?)	11.9	office / classroom / hallway	1-60	biconical
[27]			directional / omni		TEM horn

II. CHANNEL MODELS

TABLE III Path Loss Models

Source	Features	Environment	Measurements
AT&T Labs Research	• one-slope	residential	own
[2], [28], [29]	log-normal shadow fading		[2]
	• path loss coefficient and standard deviation of shadow fading		
	are normally distributed from one home to another		
Intel R&D	• one-slope	residential	own
[30], [31]	 log-normal shadow fading 		[14], [13]
Ultrawaves	• dual-slope	corridor / hall	own
[32]			[3]
U. of Rome "Tor Vergata"	• dual-slope	lab/office	Time-Domain / USC
[33]	 log-normal shadow fading 		[23]
U.C.A.N.	• one-slope	lab/office/flat	own
[34]	• "sub-PL-coefficients" for certain sub-bands		[7], [8]
Time-Domain Corp.	• theoretical multi-slope		own
[35]	• connection between measured RMS delay spread and power law		[26]
U. London / U. Pisa	deterministic model		no
[36]	• frequency dependent		
	• multi-slope, short-distance break-point		

TABLE IV
MULTIPATH MODELS

Source	Туре	Features	Environment	Measurements
Intel R& D	stat.	Saleh-Valenzuela	residential	own
[30], [31]		• log-normal amplitude fading		
		• bandpass model		[13], [14]
Intel R&D	stat	• exponential power decay and arival delay pdf	residential	own
[15]		• models angle of arrival (Laplacian distributed) according to [37]		[15]
		• parameters show frequency dependence		[12]–[14]?
AT&T Labs	stat.	• single cluster	residential	own
[38]		• exponential decay		[2]
		• normal distribution (???)		
AT&T Labs	stat.	• second order autoregressive	residential	own
[39]		• frequency domain		[2]
		• 2 poles per cluster		
Mitsubishi	stat.	• tapped delay line	lab/office	Time-Domain / USC
[33], [40]–[42]		• single exponential decay		[23]
		• log-normal decay constant		
		Nakagami amplitude fading		
TRW	stat.	• Angle of Arrival enhanced	lab/office	Time-Domain / USC
[43], [44]		Saleh-Valenzuela		[23]
U.C.A.N.	stat.	• complex passband	lab/office/flat	own
[7], [8], [45]		• diffuse multipath clusters with exponential decay		[7], [8]
		• multipath power Weibull distributed		
		• strong paths added coherently with a Poisson arrival process		
U.C.A.N.	stat.	Saleh-Valenzuela	lab/office/corridor	own
[7], [46]		log-normal fading		[7], [9]
RAWCom Lab	stat.	• two-state Markov	indoor	no
[47]		• separate modified Poisson arrivals (Δ -K model)		
		• multipath power Gamma distributed		
		exponential decay		
TAO	stat.	• small-scale multipath amplitude POCA-NAZU distributed	indoor	no
[48]				
Telia Research	stat.	• tapped delay line	indoor	no
[49]		• coherence by birth-death process of echoes		
		• exponential decay		
IEEE 802.15	stat.	• Saleh-Valenzuela	residential	multiple
[50]		• log-normal amplitude fading		
		• bandpassmodel		
CWC U. of Oulu	hybrid	• tapped delay line	indoor	own
[51], [52]		• Rice/Rayleigh fading		[3]
		• deterministic ray-tracing for most significant reflections		
WHYLESS	hybrid	• Saleh-Valenzuela	office	own
[53]–[55]		• amplitudes Rayleigh distributed		[4]
		• spatial correlation by virtual sources		
UWB Wireless Corp.	det.	• multiple frequency-dependent scattering centers		no
[56]		• multiple diffraction (GTD)		
LCST / IETR INSA	det.	• ray-tracing		no
[57], [58]		• UTD		

REFERENCES

- J. Kunisch and J. Pamp, "UWB radio channel," June 2003, tutorial presented at the International Workshop on Ultra-Wideband Systems, Oulu, Finland.
 S. S. Ghassemzadeh, R. Jana, C. W. Rice, W. Turin, and V. Tarokh, "A statistical path loss model for in-home UWB channels," in *IEEE Conference on*
- Ultra Wideband Systems and Technologies Digest of Technical Papers, 2002, pp. 59–64.
 [3] M. Hämäläinen, T. Pätsi, and V. Hovinen, "Ultra wideband indoor radio channel measurements," in Proc. 2nd Finish Wireless Communications Workshop, Tampere, Finland, Oct. 2001.
- [4] J. Kunisch and J. Pamp, "Measurement results and modeling aspects for the UWB radio channel," in IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers, 2002, pp. 19–23.
- [5] P. Pagani, P. Pajusco, and S. Voinot, "A study of the ultra-wideband indoor channel: Propagation experiment and measurement results," in COST273 TD(030)060, Jan. 2003.
- [6] —, "A study of the ultra-wide band indoor channel: Propagation experiment and measurement results," in Proc. Int. Workshop on Ultra Wideband Systems, Oulu, Finland, June 2003.
- [7] U.C.A.N., "Radio channel sounding results and model," IST-2001-32710, Tech. Rep., Nov. 2002, delivarable D31.
- [8] Á. Álvarez, G. Valera, M. Lobeira, R. Torres, and J. L. García, "Ultrawideband channel characterization and modeling," in *Proc. Int. Workshop on Ultra Wideband Systems*, Oulu, Finland, June 2003.
- [9] J. Keignart and N. Daniele, "Subnanosecond UWB channel sounding in frequency and temporal domain," in IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers, 2002, pp. 25-30.
- [10] —, "Channel sounding and modelling for indoor UWB communications," in *Proc. Int. Workshop on Ultra Wideband Systems*, Oulu, Finland, June 2003.
- [11] G. R. Opshaug and P. Enge, "GPS and UWB for indoor navigation."
- [12] R. Adler, D. Cheung, E. Green, M. Ho, Q. Li, C. Prettie, L. Rusch, and K. Tinsley, "UWB channel measurements for the home environment," July 2001, talk given at the Berkeley Wireless Research Center. [Online]. Available: http://bwrc.eecs.berkeley.edu/Seminars/past/seminars.htm
- [13] -----, "Intel UWB measurement database," 2002. [Online]. Available: http://impulse.usc.edu
- [14] L. Rusch, C. Prettie, D. Cheung, Q. Li, and M. Ho, "Characterization of UWB propagation from 2 to 8 GHz in a residential environment," *IEEE Journal on Selected Areas in Communications*, submitted for publication.
- [15] A. S. Y. Poon and M. Ho, "Indoor multiple-antenna channel charaterization from 2 to 8 GHz," in Proc. Int. Conference on Communications, May 2003.
- [16] I. Z. Kovács and P. C. Eggers, "Short-range UWB radio propagation investigation using small terminal antennas," in Proc. Int. Workshop on Ultra Wideband Systems, Oulu, Finland, June 2003.
- [17] T. B. Welch, R. L. Musselman, B. A. Emessiene, P. D. Gift, D. K. Choudhury, D. N. Cassadine, and S. M. Yano, "The effects of the human body on UWB signal propagation in an indoor environment," *IEEE Journal on Selected Areas in Communications*, vol. 20, no. 9, pp. 1778–1782, Dec. 2002.
- [18] T. Zasowski, F. Althaus, M. Stäger, A. Wittneben, and G. Tröster, "UWB for noninvasive wireless body area networks: channel measurements and results," in *IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers*, Reston, Va, USA, to appear 2003. [Online]. Available: http://www.nari.ee.ethz.ch/wireless/pubs/files/uwbst2003.pdf
- [19] Y. Suzuki and T. Kobayashi, "Ultra wideband signal propagation in desktop environments," in *IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers*, Reston, VA, USA, Nov. 2003.
- [20] J. A. Dabin, N. Ni, A. M. Haimovich, E. Niver, and H. Grebel, "The effects of antenna directivity on path loss and multipath propagation in UWB indoor wireless channels," in *IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers*, Reston, VA, USA, Nov. 2003.
- [21] M. Pendergrass and W. Beeler, "Empirically based statistical ultra-wideband (UWB) channel model," Time-Domain Corporation, Tech. Rep. P802.15 02/240SG3a, June 2002, IEEE P802.15 SG3a contribution.
- [22] M. Z. Win, R. A. Scholtz, and M. A. Barnes, "Time domain corporation UWB database," 1995. [Online]. Available: http://impulse.usc.edu/tdcindoor.html
 [23] —, "Ultra-wide bandwidth signal propagation for indoor wireless communications," in *Proc. Int. Conference on Communications*, vol. 1, June 1997, pp. 56–60.
- [24] M. Z. Win, F. Ramírez-Mireles, and R. A. Scholtz, "Ultra-wide bandwidth (UWB) signal propagation for outdoor wireless communications," in Proc. 47th IEEE Vehicular Technology Conference, vol. 1, May 1997, pp. 251–255.
- [25] K. Siwiak, "UWB propagation phenomena," Time-Domain Corporation, presentation P802.15 02/301SG3a, July 2002, IEEE P802.15 SG3a contribution.
- [26] S. M. Yano, "Investigating the ultra-wideband indoor wireless channel," in Proc. 55th IEEE Vehicular Technology Conference, vol. 3, Spring 2002, pp. 1200–1204.
- [27] A. H. Muqaibel, A. Safaai-JAzi, A. Attiya, A. Bayram, and S. Riad, "Measurement and characterization of indoor ultra-wideband propagation," in IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers, reston, VA, USA, Nov. 2003.
- [28] S. S. Ghassemzadeh and V. Tarokh, "The ultra-wideband indoor path loss model," AT&T Labs, Florham Park, NJ, USA, Tech. Rep. P802.15 02/277r1SG3a, June 2002, IEEE P802.15 SG3a contribution.
- [29] —, "The ultra-wideband indoor path loss model," AT&T Labs, Florham Park, NJ, USA, Tech. Rep. P802.15 02/278r1SG3a, June 2002, IEEE P802.15 SG3a contribution.
- [30] J. R. Foerster and Q. Li, "UWB channel modeling contribution from Intel," Intel Corporation, Hillboro, OR, USA, Tech. Rep. P802.15 02/279SG3a, June 2002, IEEE P802.15 SG3a contribution.
- [31] —, "UWB channel modeling contribution from Intel," Intel Corporation, Hillboro, OR, USA, Tech. Rep. P802.15 02/287SG3a, July 2002, IEEE P802.15 SG3a contribution.
- [32] V. Hovinen, M. Hämäläinen, R. Tesi, L. Hentilä, and N. Laine, "A proposal for an indoor UWB path loss model," Center for Wireless Communications, University of Oulu, Oulu, Finland, Tech. Rep. P802.15 02/280SG3a, June 2002.
- [33] D. Cassioli, M. Z. Win, and A. F. Molisch, "The ultra-wide bandwidth indoor channel: From statistical models to simulations," *IEEE Journal on Selected Areas in Communications*, vol. 20, no. 6, pp. 1247–1257, Aug. 2002.
- [34] U.C.A.N., "Report on UWB basic transmission loss," IST-2001-32710, Tech. Rep. IST-2001-32710, Mar. 2003.
- [35] K. Siwiak, H. Bertoni, and S. M. Yano, "Relation between multipath and wave propagation attenuation," *Electronics Letters*, vol. 39, no. 1, pp. 142–143, Jan. 2003.
- [36] A. Armogida, B. Allen, M. Ghavami, M. Porretta, G. Manara, and H. Aghvami, "Path-loss modelling in short-range UWB transmissions," in Proc. Int. Workshop on Ultra Wideband Systems, Oulu, Finland, June 2003.
- [37] R. J.-M. Cramer, "An evaluation of ultra-wideband propagation channels," Ph.D. dissertation, University of Southern California, Los Angeles, CA, USA, Dec. 2000.
- [38] S. S. Ghassemzadeh, L. J. Greenstein, and V. Tarokh, "The ultra-wideband indoor multipath model," AT&T Labs, Florham Park, NJ, USA, Tech. Rep. P802.15 02/282r1SG3a, July 2002, IEEE P802.15 SG3a contribution.
- [39] W. Turin, R. Jana, S. S. Ghassemzadeh, C. W. Rice, and V. Tarokh, "Autoregressive modeling of an indoor UWB channel," in *IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers*, 2002, pp. 71–74.
- [40] M. Z. Win, D. Cassioli, and A. F. Molisch, "The ultra-wide bandwidth indoor channel: From statistical model to simulation," Mitsubishi, Tech. Rep. P802.18 02/284SG3a, June 2002, IEEE P802.15 SG3a contribution.
- [41] —, "A statistical model for the UWB indoor channel," Mitsubishi, Tech. Rep. P802.18 02/285SG3a, June 2002, IEEE P802.15 SG3a contribution.

- [42] D. Cassioli, M. Z. Win, and A. F. Molisch, "A statistical model for the UWB indoor channel," in Proc. 53rd IEEE Vehicular Technology Conference, vol. 2, May 2001, pp. 1159–1163.
- [43] R. J.-M. Cramer, R. A. Scholtz, and M. Z. Win, "Evaluation of an ultra-wide-band propagation channel," *IEEE Transactions on Antennas and Propagation*, vol. 50, no. 5, pp. 561–570, May 2002.
- [44] R. J.-M. Cramer, "An evaluation of indoor ultra-wideband communication channels," TRW Space & Electronics, presentation P802.15 02/325SG3a, June 2002, IEEE P802.15 SG3a contribution.
- [45] A. Álvarez, G. Valera, M. Lobeira, R. P. Torres, and J. L. García, "UWB channel model contribution from university of cantabria and ACORDE," University of Cantabria, ACORDE, Santander, Spain, presentation P802.15 02/445, Nov. 2002, IEEE P802.15 SG3a contribution.
- [46] J. Keignart, J. Pierrot, N. Daniele, and P. Rouzet, "UWB channel modeling contribution from CEA–LETI and STMicroelectronics," CEA–LETI, Grenoble, France, presentation P802.15 02/444, Nov. 2002, IEEE P802.15 SG3a contribution.
- [47] F. Zhu, Z. Wu, and C. R. Nassar, "Generalized fading channel model with applications to UWB," in IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers, 2002, pp. 13–17.
- [48] H. Zhang, T. Udagawa, T. Arita, and M. Nakagawa, "A statistical model for the small-scale multipath fading characteristics of ultra-wideband indoor channel," in *IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers*, 2002, pp. 81–85.
- [49] A. Glazunov, "Performance analysis of impulse radio based on an ultra wideband channel model for indoor communications," *Radiovetenskap och Kommunikation*, no. 2, pp. 734–738, June 2002.
- [50] J. R. Foerster, "Channel modeling sub-committee report final," IEEE 802.15 SG3a, Tech. Rep. P802.15 02/490r1, Feb. 2003.
- [51] V. Hovinen, M. Hämäläinen, and T. Pätsi, "Ultra wideband indoor radio channel models: Preliminary results," in *IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers*, 2002, pp. 75–79.
- [52] V. Hovinen and M. Hämäläinen, "Ultra wideband radio channel modelling for indoors," in COST273 Workshop, Helsinki, Finland, May 2002.
- [53] J. Kunisch and J. Pamp, "Radio channel model for indoor UWB WPAN environments," IMST GmbH, presentation P802.15 02/281SG3a, June 2002, IEEE P802.15 SG3a contribution.
- [54] whyless.com, "Air interface concept (including channel model)," IST-2000-25197, Tech. Rep. Deliverable D5.1.b, Jan. 2002.
- [55] J. Kunisch and J. Pamp, "An ultra-wideband space-variant multipath indoor radio channel model," in IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers, Reston, VA, USA, Nov. 2003.
- [56] R. C. Qiu, "A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design," IEEE Journal on Selected Areas in Communications, vol. 20, no. 9, pp. 1628–1637, Dec. 2002.
- [57] B. Uguen, E. Plouhinec, Y. Lostanlen, and G. Chassay, "A deterministic ultra wideband channel modeling," in IEEE Conference on Ultra Wideband Systems and Technologies Digest of Technical Papers, 2002, pp. 1–5.
- [58] F. Tchoffo-Talom, B. Uguen, and E. Plouhinec, "Study of interactions effects on ultra wideband signals propagation," in Proc. Int. Workshop on Ultra Wideband Systems, Oulu, Finland, June 2003.