Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [UWB Channel Measurement Results in Indoor Residential Environment – High-Rise Apartments]
Date Submitted: [19 May, 2004]
Source: [Chia-Chin Chong, Youngeil Kim, SeongSoo Lee]
Company [Samsung Advanced Institute of Technology (SAIT)]
Address [RF Technology Group, i-Networking Lab, P. O. Box 111, Suwon 440-600, Korea.]
Voice:[+82-31-280-6865], FAX: [+82-31-280-9555], E-Mail: [chiachin.chong@samsung.com]

Re: [Response to Call for Contributions on IEEE 802.15.4a Channel Models]

Abstract: [This contribution describes the UWB channel measurement results in indoor residential environment. Measurements were conducted in several types of high-rise apartments based in several cities in Korea. It consists of detailed characterization of the path loss and temporal-domain parameters of the UWB channel with bandwidth from 3 to 10 GHz.]

Purpose: [Contribution towards the IEEE 802.15.4a Channel Modeling Subgroup.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

UWB Channel Measurement Results in Indoor Residential Environment – High-Rise Apartments

Chia-Chin Chong, Youngeil Kim, SeongSoo Lee Samsung Advanced Institute of Technology (SAIT), Korea

Outline

- Motivation
- Measurement Setup & Environment
- Data Analysis & Post-Processing
- Channel Measurement Description
- Measurement Results
- Conclusion
- Future Work

Motivation

- Study the UWB wave propagation characteristics in indoor residential environment
- Develop a channel model suitable for UWB applications in high-rise apartments
- Submit contributions to the IEEE802.15.4a channel modeling subgroup standardization activities

Measurement Setup (1)

- Frequency domain technique using VNA
 - Center frequency, f_c : 6.5GHz
 - Bandwidth, B : 7GHz (i.e. 3-10GHz)
 - Delay resolution, $\Delta \tau$: 142.9ps (i.e. $\Delta \tau$ =1/B)
 - No. frequency points, N: 1601
 - Frequency step, Δf : 4.375MHz (i.e. Δf =B/(N-1))
 - Max. excess delay, τ_{max} : 229.6ns (i.e. τ_{max} =1/ Δf)
 - Sweeping time, t_{sw} : 800ms
 - Max. Doppler shift, $f_{d,max}$: 1.25Hz (i.e. $f_{d,max}$ =1/ t_{sw})

Measurement Setup (2)

- UWB wideband planar dipole antennas
- Measurement controlled by laptop with LabVIEW via GPIB interface
- Calibration performed in an anechoic chamber with 1m reference separation
- Static environment during recording
- Both large-scale & small-scale measurements
 - Large-scale: different RX positions \rightarrow "local point"
 - − Small-scale: 25 (5x5) grid-measurements around each local point \rightarrow "spatial point"
 - At each spatial point, 30 time-snapshots of the channel complex frequency responses are recorded

May 2004 UWB Planar Dipole Antenna doc.: IEEE 15-04-0282-00-004a

Measurement Environment

- Measurements in various types of high-rise apartments based on several cities in Korea → typical types in Asia countries like Korea, Japan, Singapore, Hong Kong, etc.
 - 3-bedrooms
 - 4-bedrooms
 - 5-bedrooms (to be done!)
- Both LOS and NLOS configurations
- TX-RX antennas:
 - Separations: up to 20m
 - Height: 1.25m (with ceiling height of 2.5m)
 - TX antenna: always fixed in the center of the living room
 - RX antenna: moved around the apartment (i.e. 8-10 locations)
- To date, in total of 12,000 channel complex frequency responses are collected (i.e. 2 apartments x 8 RX local points x 25 spatial points x 30 time snapshots → 2x8x25x30=12,000)

May 2004

3-Bedroom Apartment doc.: IEEE 15-04-0282-00-004a

4-Bedroom Apartment (2)_{doc.: IEEE 15-04-0282-00-004a}

May 2004

Living Room

Measurement Results (1)

Measurement Results (2)

Data Analysis & Post-Processing

- All measurement data are calibrated with the calibration data measured in anechoic chamber to remove effect of measurement system
- Perform frequency domain windowing to reduce the leakage problem
- Complex passband IFFT is deployed to transform the complex frequency response to complex impulse response
- Perform temporal domain binning before extract channel parameters

Complex Passband IFFT

May 2004

Channel Model Description

- Path loss
- Temporal-domain parameters:
 - RMS delay spread, τ_{rms}
 - Mean excess delay, τ_m
 - No. of paths within 10dB of peak, NP10dB
 - No. of paths within 20dB of peak, NP20dB
 - No. of paths within 30dB of peak, NP30dB

Path Loss

• Path loss (PL) vs. Distance (d):

$$PL_{dB}(d) = PL_0 + 10n\log_{10}\left(\frac{d}{d_0}\right)$$

$$- d_0 = 1 \,\mathrm{m}$$

- PL_0 : intercept
- *n* : path loss exponent
- Perform linear regression to the above equation with measured data to extract the required parameters

Path Loss vs. Distance – LOS doc.: IEEE 15-04-0282-00-004a May 2004

Chia-Chin Chong, Samsung (SAIT)

Path Loss Results

Scenario	3-Bedroom	Apartment	4-Bedroom Apartment					
	п	PL_{0}	п	PL_0				
LOS	1.18	50.1	2.48	49.7				
NLOS	2.18	52.2	2.69	52.7				

Temporal-domain Parameters

 These parameters were obtained after taking frequency domain Hamming windowing, passband IFFT & temporal domain binning with bin size 100ps

	3-Bedroom Apartment								4-Bedroom Apartment											
Location	τ _{rms} [ns]		$\tau_{\rm m}$ [ns]		NP10dB		NP20	20dB NP30dB		0dB	τ _{rms} [ns]		$\tau_{\rm m}$ [ns]		NP10dB		NP20dB		NP30dB	
	μ	σ	μ	σ	μ	σ	μ	σ	μ	σ	μ	σ	μ	σ	μ	σ	μ	σ	μ	σ
LOS	14.00	1.53	5.88	1.25	4.04	1.53	29.91	11.15	145.38	38.89	12.48	1.87	5.01	0.64	5.97	1.96	37.21	9.20	161.02	31.59
NLOS	38.61	8.03	36.09	15.48	19.58	7.64	141.63	42.23	512.57	76.28	26.51	5.22	24.95	8.47	23.51	10.75	139.95	50.14	424.78	93.77

RMS Delay Spread vs. Distance – LOS doc.: IEEE 15-04-0282-00-004a

0 2

2.5

3.5

3

5

5.5

6

6.5

4.5

4 Distance, d [m]

Distribution of No. of Paths – LOS

Distribution of No. of Paths – NLOS doc.: IEEE 15-04-0282-00-004a

300

400

500

NP30dB

600

700

800

900

0∟ 100

200

Conclusion

- Frequency domain technique UWB measurement campaign has been carried out in various types of high-rise apartments covering frequencies from 3 to 10 GHz.
- Measurement covered both LOS & NLOS scenarios.
- Channel measurement results for path loss and temporal-domain parameters (e.g. mean excess delay, RMS delay spread, number of paths) are .presented

Future Work

- Extract S-V channel parameters
- Extract small-scale amplitude statistics
- Propose a suitable statistical channel model

May 2004