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Objectives

Main goal: establish and verify UWB channel models suitable for
theoretical analysis, concerning

• Tap statistics

• Stochastic degrees of freedom

• Uncorrelated scattering assumption

Genuine focus was not IEEE 802.15.4a channel modeling work, hence not
all 802.15.4a channel model parameters could be extracted.
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Measurement Setup — Schematic
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Measurement Setup — Details
Measurements were taken in the frequency domain

• HP 8722D vector network analyzer (VNA), 50 MHz – 40 GHz

• Minicircuits ZVE 8G power amplifier, 2GHz – 8 GHz, 30 dB gain

• Skycross SMT-3TO10M UWB antannas (prototype), Omni

• Custom RF amplifier, 20 dB gain up to 10 GHz, NF < 6

• H&S Sucoflex 104 cables

• Custom modified Diadrive 2000 positioning table

• Control via Matlab (Instrument Control & Data Acquisition Toolboxes)
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VNA Settings
The VNA was equipped with option 12, “direct sampler access”, for
improved dynamic range

• Frequency range 2–8 GHz, divided into two bands

• 1601 points per band, for a total of 3201 points

• 1.875 MHz point spacing

• Max. resolvable delay of 533 ns, equivalent to 160 m path length

• IF bandwidth 300 Hz

• Total sweep time 19 s

• Calibration included all equipment except antennas
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Environments

We measured two different environments at the premises of ETH Zurich,
Switzerland, in typical European style office buildings.

• Corridor, e.g. for sensing applications; brick walls, windows, concrete
floor and ceiling

• Entrance lobby, typical public space; tiled floor, large glass windows,
concrete walls

All measurements were taken at night on weekends to ensure a static
channel.
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Lobby Environment
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Measurement Methodology

• Virtual array approach to obtain enough small scale data

• Array spacing is 7 cm, 5×9 grid

• measured two arrays per Tx–Rx separation for 90 points total

• recorded one frequency response per array point

• measured several scenarios (LOS, OLOS, NLOS), with various Tx–Rx
separations in each scenario
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Sample Impulse Response Magnitude — Lobby LOS
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Average Impulse Response Magnitude — Lobby LOS
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Average Impulse Response Magnitude — Lobby OLOS
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Average Impulse Response Magnitude — Lobby NLOS
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Modeling Considerations

The standard wideband fading model

h(t, τ) =
N(τ)−1∑

k=0

ak(t)δ(τ − τk(t))ejθk(t)

assumes specular reflections — there are distinct, frequency
independent propagation paths.

Assumption might not hold for UWB Channels!

Instead, we simply consider the discrete time LTI system h[n]. There is no
notion of resolvable paths; the model is still sufficient for system analysis
and design.
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Fading Tap Statistics
We use the small scale spatial variations of the received amplitude
across the virtual array for statistical analysis.

Goal: find the best fitting distribution within a set of candidate models:

• Rayleigh

• Rice

• Nakagami

• Lognormal

• Weibull

This is a model selection problem. Hypothesis testing is not a
meaningful approach.
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Model Selection using Akaike’s Information Criterion (AIC)

A measure for the difference of distributions is relative entropy. AIC is an
unbiased estimate of the relative entropy difference between a
candidate model and the true distribution, given as

−2 log qi(y | Θ̂(y)) + 2K

with qi(· |Θ) the parameterized PDF of candidate model i, i.i.d. data
vector y and ML parameter estimate Θ̂(y).

From this, it is possible to compute the probability for each candidate
model of providing the best fit, called Akaike weight wi.

Advantage: no ambiguities due to confidence level selection, test power
and binning.
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Akaike Weights, Averaged Impulse Response — Lobby LOS
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Fading Model Selection

We computed Akaike Weights for all scenarios

• Rayleigh provides on average the best fit

• Rayleigh is not good at the start of a cluster

• LOS component is often Weibull distributed

• Lognormal is almost always the worst model

Conclusion: there is not single true model, but Rayleigh still seems to be
an appropriate and convenient choice for UWB, except for the first taps
in each cluster.
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Small Scale Parameters - Time Dispersion

Mean delay and delay spread often used to characterize time
dispersiveness of the channel. They are not the most general description.

Estimates can be computed as

τ̄ =
L∑

l=1

h̃[l]l mean delay

s =

√√√√ L∑
l=1

(l − τ̄)2h̃[l] delay spread

where the h̃ is the magnitude of the power normalized impulse
response. Mean and standard deviation can now be computed over all
small scale positions on the virtual array.
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Mean Delay and Delay Spread Statistics — Lobby LOS

Mean Delay Delay Spread
Distance µτ̄ στ̄ µs σs

27 m 27.13 ns 1.74 ns 49.5 ns 2.08 ns
24 m 27.15 ns 2.86 ns 49.23 ns 3.37 ns
21 m 30.99 ns 2.30 ns 53.62 ns 2.25 ns
18 m 29.86 ns 2.11 ns 52.23 ns 1.64 ns
15 m 27.26 ns 1.75 ns 49.20 ns 1.63 ns
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Mean Delay and Delay Spread Statistics — Lobby OLOS

Mean Delay Delay Spread
Distance µτ̄ στ̄ µs σs

27 m 49.82 ns 7.78 ns 74.08 ns 7.04 ns
24 m 46.86 ns 6.33 ns 71.07 ns 5.91 ns
21 m 45.61 ns 5.70 ns 71.23 ns 4.43 ns
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Mean Delay and Delay Spread Statistics — Corridor

LOS Setting

Mean Delay Delay Spread
Distance µτ̄ στ̄ µs σs

12.5 m 7.55 ns 0.88 ns 21.08 ns 1.65 ns
10.5 m 10.68 ns 1.69 ns 24.70 ns 2.19 ns
8.5 m 9.93 ns 2.15 ns 23.74 ns 2.86 ns

NLOS Setting

Mean Delay Delay Spread
µτ̄ στ̄ µs σs

24.44 ns 1.16 ns 31.11 ns 1.87 ns
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Small Scale Parameters - The Saleh-Valenzuela Model
The proposed 802.15.4a channel model is continuous time and specular:

h(t) =
L−1∑
l=0

K−1∑
k=0

ak,lδ(t− Tl − τk,l,)

with L clusters and K rays per cluster. Ray and cluster arrivals are
described by Poisson processes with interarrival probabilities

P(Tl |Tl−1) = Λ exp{−Λ(Tl − Tl−1)}.

Ray and cluster power decay are exponential

E
[
|ak,l|2

]
= E

[
|a0,0|2

]
exp

{
−Tl

Γ

}
exp

{
−τk,l

γ

}
.
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Saleh-Valenzuela Model Parameter Extraction

Our discrete time model does not fit this framework⇒ cannot extract all
parameters since there are no rays. Using the methodology presented by
Balakrishnan in doc. 802.15-04-0342-00-004a, we computed

• Cluster decay coefficient Γ

• Inter-cluster decay coefficient γ

• Cluster interarrival time Λ

The model fit is not always satisfactory, as can be seen in the following
plots. We only extracted S-V parameters for the LOS scenarios, where
clusters were observable.
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Cluster Decay — Corridor LOS
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Intra-Cluster Decay — Corridor LOS
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Cluster Interarrival Times — Corridor LOS
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Cluster Decay — Lobby LOS
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Intra-Cluster Decay — Lobby LOS
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Cluster Interarrival Times — Lobby LOS
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Large Scale Parameters — Path Loss

The simplest pathloss model consists of a single slope with exponential
decay

10 log P (d) = G0 + 10ν log
d

d0
, d ≥ d0

with d0 = 1m, an arbitrarily chosen reference distance, and G0 the
reference loss at d0.

Our measurements are not targeted at pathloss extraction; only in three
settings enough large scale data points are available to yield crude
estimates, as can be observed from the following scatter plots.
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Path Loss Fit — Lobby LOS
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Path Loss Fit — Lobby OLOS
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Path Loss Fit — Corridor LOS
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Pathloss Coefficients

Setting ν G0

Lobby LOS 1.6 -49 dB
Lobby OLOS 2.2 -45 dB
Corridor LOS 1.2 -51 dB
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