Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs)

Submission Title:	PSSS proposal – Parallel reuse of 2.4 GHz PHY for th	ne sub-1-GHz bands
Date Submitted:	14th April 2005	
Source:	Andreas Wolf, DWA Wireless GmbH and Hans van I	Leeuwen, Integration
	DWA Wireless GmbH, Germany Tel.: +49 (0)700 965 32 637	aw@dw-a.com
	Integration, USA Tel: +1 858 344 5120	hvl@highstream.net
Re:	PSSS mode for more even chiprates, simpler filter, an	d 250 kbit/s in 868 MHz
Abstract:	Ballot comments received indicated interest in the TG for 868 MHz to have the same 250 kbit/s bitrate as the	
Purpose:	Response to ballot comments to discuss potential mod	lifiation of PSSS draft specification
Notice:	This document has been prepared to assist the IEEE P discussion and is not binding on the contributing indiv in this document is subject to change in form and cont reserve(s) the right to add, amend or withdraw materia	vidual(s) or organization(s). The material tent after further study. The contributor(s)
Release:	The contributor acknowledges and accepts that this co and may be made publicly available by P802.15.	ontribution becomes the property of IEEE

Discussion: 250 kbit/s PSSS for 868 MHz

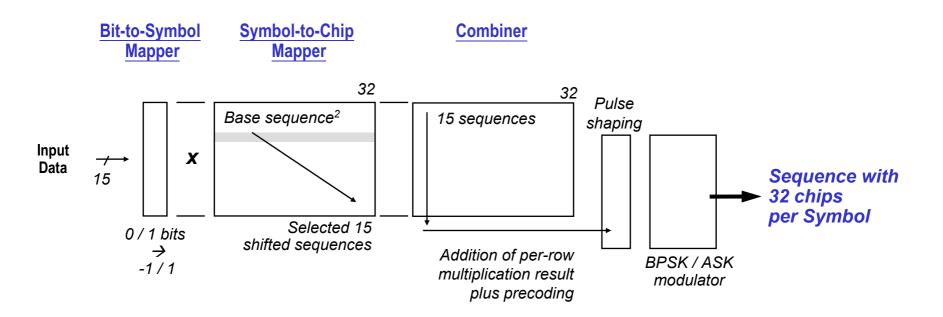
Key Considerations

- Comments indicated interest in the TG4b task group to provide 250 kbit/s for bot 868 and 915 MHz
 - Marketing benefit of having homogenous bit rate in all bands
- Discussion of implementation complexity due to uneven chip rates
 - Clarifications from chip vendors have shown that 440 kcps is not truly a concern – will not increase implementation size
 - Simply changing to 400 kcps rate in current PSSS specification is not attractive due to bitrate < 200 kbit/s (OEM concern)
 - Modifiation of PSSS mode to 400 kcps rate at 250 kbit/s possible
- Modified PSSS mode for 250 kbit/s in 868 MHz will even decrease filter complexity
 - Implementation complexity on Tx side¹ (of both COBI and PSSS) is clearly driven by compliance to ETSI PSD mask in 868 MHz

^{1:} Key driver for implementation complexity on Rx side is need to withstand interference (dynamic range, linearity of Rx frontend)

The PSSS mode for 868 MHz could be modified to 250 kbit/s while even *decreasing* implementation complexity

	PSSS 206-440 ¹ 868 Mhz	PSSS 250-400 ¹ 868 Mhz	PSSS 250-1600 915 MHz
Bandwidth	600 kHz	600 kHz	2,400 kHz ²
Chiprate	440 cps	400 cps	1,6000 cps ²
Bitrate	206 kit/s	250 kit/s	250 kbit/s
Spectral efficiency ³	15/32 bit/s/Hz	20/32 bit/s/Hz	5/32 bit/s/Hz
Spreading	15x 32-chip seq.	20x 32-chip seq.	5x 32-chip seq.
RF backward compatibility	Single BPSK / ASK radio	Single BPSK / ASK radio	Single BPSK/ASK radio
Comments	Original PSSS mode	Enhanced original PSSS mode	


1: Changed names of modes to be consistent <bit rate>"-"<chip rate>

2: Complies to 915 MHz PSD mask specified in IEEE802.15.4-2003

 $|f-f_c| > 1.2$ Mhz: Relative limit -20 dB; Absolute limit -20 dBm

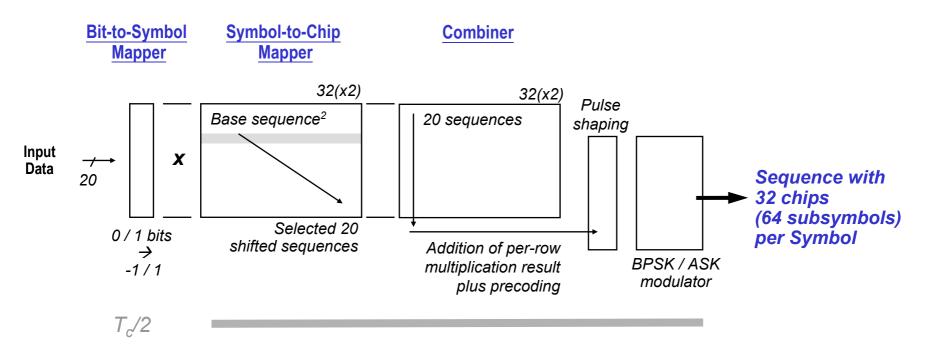
2: Coding level

IEEE802.15.4b-D1 Specification Draft: PSSS 206-440 868 MHz – BPSK/ASK (15/32 bit/s/Hz)¹

...addition of multiple parallel sequences instead of selection of single sequence

1: Overview, please see TG4b PHY draft specification text and earlier versions of this document for details 2: Use of single base sequence simplifies implementation in Rx

PSSS 250-400 868 MHz Coding Table:

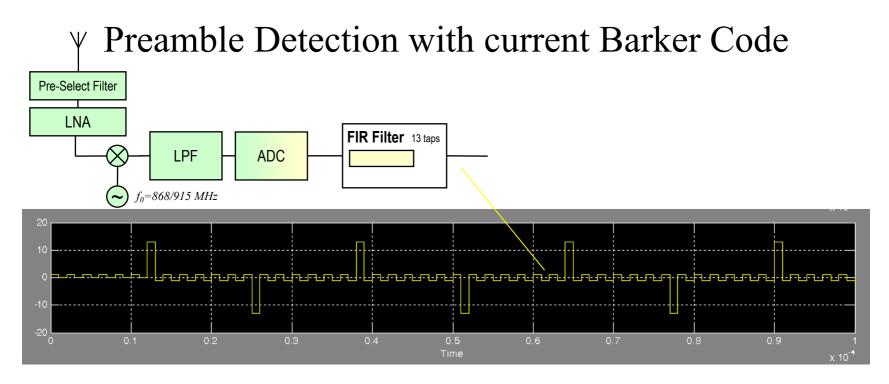

Shifting of sequences by 3 instead of 4 subchips enables addition of sequences to achieve 250 kbit/s and 400 kcps

Sequence	Ch	ip	nur	nbe	er													· · · ·							<u> </u>											Γ					-						٦
number	П	Ĩ	2		3	4	ŀ	5	6	6	7		8	ĝ		10	1	1	12	2	13	14	1	15	1	6	17	1	8	19	20	2	21	22	23	2	24	25	26	27	2	28	29	30	31	3	2
0	-	Π	-1		-1	-	1	1	-	1	-1		1	-		1		1	-1		-1	1		1	1	1	1	1		-1	-1	-	1	1	1	-	1	1	1	1	Τ-	1	1	-1	1	-	1
1	-1	1		-1	-	1	-1		-1	1		-1	-	1	1		-1	1		1	-	1	-1		1	1		1	1		1	-1	-1	-	1	1	1	-	1	1	1	1	-	1	1	-1	1
2	П		-1		1	- '	1	-1	-	1	-1		1	-		-1		1	-1		1	1		-1	-	1	1	1		1	1	1	1	-1	-1	-	1	1	1	-1		1	1	1	-1	Τ,	1
3	1	-1		1	-	1	1	-	-1	-1	1	-1	-	1	1		-1	- 1	1	1	-	1	1		1	-1	-	1	1		1	1	1		1	-1	-1	-	1	1	1	-1		1	1	1	-1
4	П		1		1	1		-1	Г	1	-1		-1	- '	1	-1		1	-1		-1	1		-1	1	1	1	- '	1	-1	1		1	1	1	1	1	-1	-1	-1	1	1	1	-1	1	Τ,	1
5	-1	1		1	· 1	1	-1		1	-1	1	1	-	1	-1		-1	- 1	1	1	-	1	-1		1	-1		1	1	-	1	-1	1		1	1	1	Т	1 -	-1	-1	-1		1	1	-1	1
6			-1		1	1		1	T -	1	1		-1	1		-1	-	1	-1		-1	1		-1	-	1	1	- 1	1	1	1	- 1	1	-1	1		1	1	1	1	Τ-	1	-1	-1	1	Τ.	1
7	-1	1		1	-	1	1		1	1		-1		1	-1		1	-1	1	-1	-	1	-1		1	-1	-	1	1	-	1	1	1	-	1	-1	1	Т	1	1	1	1	-	1 -	1	-1	1
8	-		-1		1	1		-1	Γ	1	1		1	- '	1	1	-	1	1		-1	-1		-1	-	1	1	- '	1	-1	1	- 1	1	1	1	-	1	-1	1	1	Τ.	1	1	1	-1	-	1
9	1	-1		-1	-	1	1		1	-1	1	1		1	1		-1	1		-1		1	-1	-	1	-1	-	1	1	-	1	-1	1	-	1	1	1	-	1 -	-1	1	1		1	1	1	-1
10	П	Π	1		1	- 1	1	-1	Γ	1	1		-1	1		1		1	-1		1	-1		1	-	1	-1	- '	1	-1	1	- 1	1	-1	1	-	1	1	1	-1	Τ-	1	1	1	1	T	ľ
11	1	1		1		1	-1	-	-1	-1	1	1		1	-1		1	1		1		1	1	- 1	1	1	·	1	-1	-	1	-1	1	-	1	-1	1	-	1	1	1	-1	-	1	1	1	1
12	П	Π	1		1	1		1	- 1	1	-1		-1	1		1	-	1	1		1	1		-1	1	1	-1	1		-1	-1	- 1	1	-1	1	-	1	-1	1	-1		1	1	-1	-1	T	1
13	-1	-1		1		1	1		1	1		-1	-	1	-1		1	1		-1		1	1		1	-1		1	-1		1	-1	-1	-	1	-1	1	-	1 -	-1	1	-1		1	1	-1	-1
14	П	Π	-1	•	1	1		1	Γ	1	1		1	- '	1	-1	-	1	1		1	-1		1	1	1	1	- '	1	1	-1	Г	1	-1	-1	-	1	-1	1	-1	-	1	1	-1	1	T	ľ
15	-1	1		1	-	1	-1		1	1		1		1	1	Τ	-1	-1	1	-1		1	1	-	1	1		1	1	-	1	1	-1		1	-1	-1	-	1 -	-1	1	-1	-	1	1	-1	1
16	Г	Π	-1		1	1		-1	- 1	1	1	Τ	1	1		1		1	-1		-1	-1		1	1	1	-1	1		1	1	- 1	1	1	-1	-	1	-1	-1	-1	-	1	1	-1	-1	\Box	ľ
17	-1	-1		1	-	1	1		1	-1	1	-1		1	1	Τ	1	1		1	-	1	-1	-	1	1		1	-1		1	1	1	-	1	1	-1	Г	1 -	-1	-1	-1	-	1	1	-1	-1
18	Г	Π	-1	•	1	1		-1	Γ	1	1		-1	- '	1	1		1	1		1	1		-1	-	1	-1	1		1	-1	Γ.	1	1	1	-	1	1	-1	1	-	1	-1	-1	-1	\Box	
19	-1	-1		1	-	1	-1		1	-1	1	1	·	1	-1		-1	1		1		1	1		1	-1	-	1	-1		1	1	-1		1	1	1	-	1	1	-1	1	-	1 -	1	-1	-1
		2	3	4 5	5 6	7	8	9 10) 11	12	13	14 1	5 16	17	18	19 2	21	22	23 2	24 2	5 26	27	28 2	9 30	31	32	33 34	35	36 3	7 38	39 4	0 41	42	43 44	45 4	6 47	48 4	19 50	51 52	2 53 5	54 55	56	57 58	59 60	61 6	63	64
	Su	ıbo	hi	p n	ur	nb	er																																								

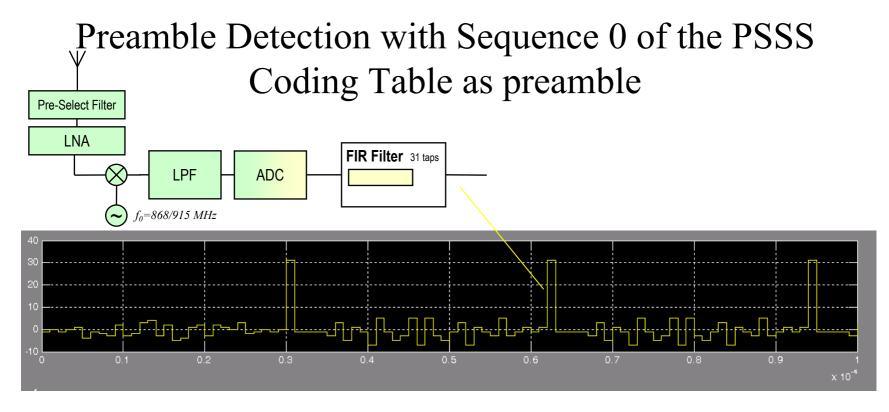
• 2 sub-chips per chip – basic chip rate of coding scheme is unchanged

• Addition per sub-chip for multivalue encoding – no other changes of PSSS model

No modification of the basic PSSS model: PSSS 250-400 868 MHz – BPSK/ASK (20/32 bit/s/Hz)

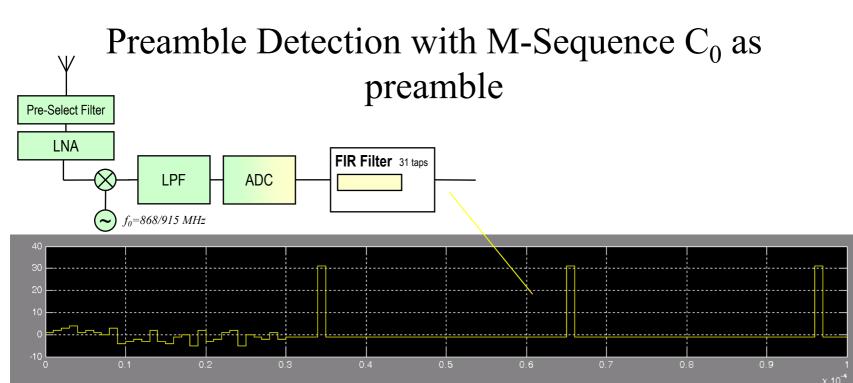

- No increase of Tx complexity in real-world implementation
 - Oversampling used for baseband filtering to achieve PSD compliance anyhow
 - No change in number of chips per symbol no increase in coding table sizes
- Simpler baseband filter sufficient due to lower chiprate
- No change in Rx processing required

PSSS Codes form Coding Table in Draft Standard


- Sequence 0 is c_0 (m-sequence) plus c_{0ext} (cyclic extension = chip 0)
- Sequence $0 = [\mathbf{c}_{0,} \mathbf{c}_{0ext}]$

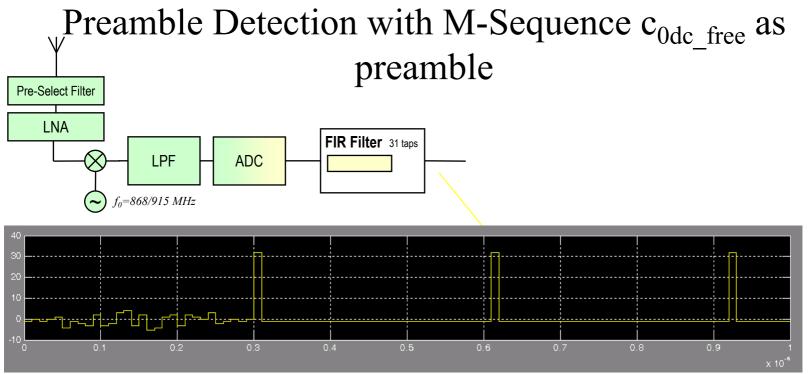
Sequence	Chi	pnu	nte	r		(20																											
nonter	0	1	2	3	4		5	6	7	8	- 9	10	11	12	В	ы	Б	ľ	17	18	В	20	21	22	23	24	25	26	27	28	29	30	31	
0	-1	-1	-1	-]	1		-1	-1	-1	-1	1	1	-]	-]		1	1		1	-1	-1	-1	1	1	-1	1	1	1	-1	1	-1	1	-]	
1	-1	1	-1	-]	_]		-1	1	-1	-1	1	-1	1	1	-1	-]	1	1	1	1	1	-]	-]	-1	1	1	-1	1	1	1	-1	1	-]	
2	-1	1	Ŧ		-]		-1	-1	-1	1	-	-]	1	Ī			-1	-	1	1	1	1	1	-1	-]	-1	1	1	-1	1	1	1	1	C _{0ext}
3	1	1	Ŧ]	-]		1	-1	-1	-1	-]	1	-]	-	1	-]	1]	-1	-]	1	1	1	- 1]	-1	-1	-1	1	1	-1	1]	
4	-1	1		1	-]		1	-1	1	-1	-]	-1	-]	1	-1	_]	1	-]	1	1	-1	-1	1	1	1	1	1	T	-1	-1	1	1	-	
5	1	1	Ŧ	1]		1	-1	1	-1	1	-1	-	-	-]	1	-1	-]	1	-]	1	1	-]	-1	1	1	1	1	1	-1	-1	-L	1	
6	-1	-1	-1		-]		1	1	1	-1]	-1]	-	-1	-]	-1]	-1	-1	1	-	1	1	-]	-1	1	1	1	1	1	Ŧ	-	
7	1	-1	Ŧ	Ţ]		1	-1	1	1]	-]	1	Ţ	1	-]	-]	1	-1	1	-]	-1	-1	-1	1	1	-1	Т	1	1	1	1	I	
8	1	1	-1	-]	_]		-1	1	1	-1	1	1	1	-]	1	-1	1	-]	-1	-1	-1	1	-1	-1	1	-1	1	- 1	-1	-1	1	- 1	1	
9	1	1	-1]		-1	-1	-1	1]	-1	1		1	-]	1	-	1	-1	-1	-1	-]	1	-]	-1	1	-1	1	1	-1	-1		
10	-1	-1	- 1	1]		1	1	-1	-1	-]	1	1	-]	- 1	1	1	-]	1	-1	1	-1	-1	-1	-1	1	-1	-1	1	-1	1	- 1	-]	
11	1	1	-1	-]		1	1	1	1	-]	-1	-		1	-]	1	1	1	-1	1	-	1	-1	-1	-1	-1	1	-1	-1	1	Ŧ		
12	1	-1	1]	_]		-1	1	1	1	1	1	-]	-]	-1	1	1	-]	1	1	1	-1	1	-1	1	-1	-1	-1	-1	1	-1	-1		
в	-1	-1	1	-]]		1	-1	-1	1]	1	1		-1	-]	-]	1	1	-1	1	1	1	-1	1	-1	1	-1	-1	-1				
14	-1	1	Ţ	-7]		-1	1	1	-1	-]	1	1		1	1	-1	-	-1	1	1	-]	1	1	1	-1	1	-1	1	-1	-1	Ţ	-	

Table 27-PSSS Code table used in Symbol-to-Chip mapping for 868 MHz



- When detecting the current barker code based preamble with FIR filter, the signal coming out of the FIR filter has side slopes limited to +/- 1.
- Advantages:
 - It is DC free
- Disadvantages:
 - Sides slopes causes a mismatch of the energy maximum detection for multipath fading channels.
 - Two FIR filters needed, one for preamble detection (13 chip barker code), one for PSSS decoding (31 chip m-sequence).

- When detecting the preamble, base on repeated sequence 0 with FIR filter, the signal coming out of the FIR filter has side slopes limited to +5/-6.
- Advantages:
 - Use of just one FIR filter or correlator for preamble detection and PSSS decoding.
 - 32 chip long preamble code.
 - DC free
- Disadvantages:
 - Sides slopes causes a mismatch of the energy maximum detection for multipath fading channels.


Submission

- When detecting the preamble, base on repeated m-sequence c_0 with FIR filter, the signal coming out of the FIR filter has no side slopes, when the first m-sequence c_0 has passed the FIR filter.
- Advantages:
 - Use of just one FIR filter or correlator for preamble detection and PSSS decoding.
 - No side slopes.
 - Optimal maxima detection for multipath fading channels possible.
- Disadvantages:
 - Not DC free.
 - Length of 31 chips instead of 32 chips

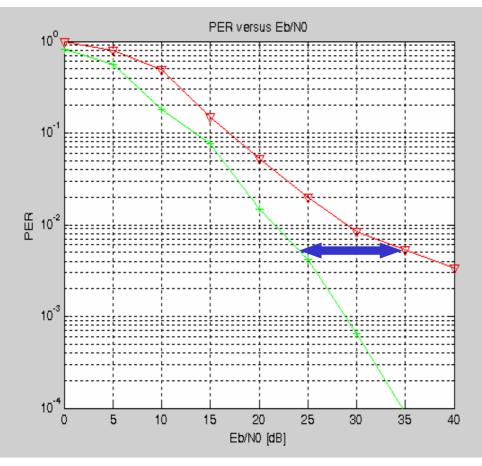
Generating of DC-Free 31 chip long M-Sequence

- M-sequence c_0 contains 15 times -1 and 16 times +1. That causes an offset of 1/31.
- If that small DC offset is a real problem, what we don't heard form several chip vendors, it could be eliminated by:
- Due to the fact that we have ASK modulation for the payload, it is no problem to send that preamble based on c_{0dc_free}.

- When detecting the preamble, base on repeated m-sequence $c_{0dc_{free}}$ with FIR filter, the signal coming out of the FIR filter has no side slopes, when the first m-sequence $c_{0dc_{free}}$ has passed the FIR filter.
- Advantages:
 - Use of just one FIR filter or correlator for preamble detection and PSSS decoding.
 - No side slopes.
 - DC free.
 - Optimal maxima detection for multipath fading channels possible.
- Disadvantages:
 - 31 chip length instead of 32 chips as for the PSSS codes

Proposed Pream	mb	le
----------------	----	----

	Barker Code	Sequence 0	M-Sequence c0	<u>M-Sequence</u> <u>c0dc_free</u>
Optimal Detection	no	no	yes	yes
DC free	yes	yes	no	yes
32 Chip long	no	yes	no	no
# of needed FIR in Rx	2	1	1	1

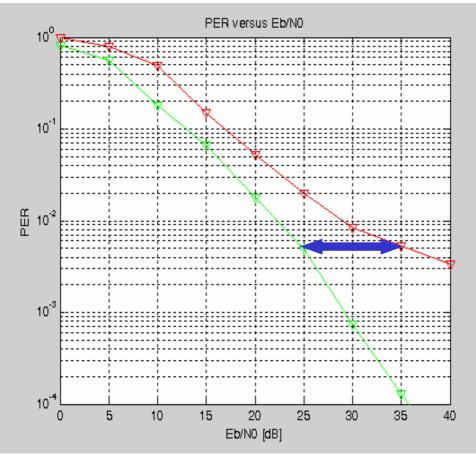

- We propose to use a preamble with repeated Sequence 0 or m-sequence $c_{0/c}$ $c_{0dc free}$ for lowest design complexity and highest performance.
- If length of 32 chips is needed for preamble code the usage of Sequence 0 is the best solution.

Length of Proposed Preamble

	Code length	# of codes	# of repeating	preamble # of chips
Barker Code	13	2	8	208
31 chip m-sequence c0 or c0dc_free	31	1	6	186
Sequence 0	32	1	6	192
Sequence 0	32	1	7	224
31 chip m-sequence c0 or c0dc_free	31	1	7	217

• The sequence 0 or m-sequence $c_{0/c_{0dc_{free}}}$ should be repeated 6 or 7 times for getting nearly same length than the original Barker code base sequence.

PER Performance PSSS 206-440 868 MHz (BPSK/ASK) – Discrete Exponential Channel, 250ns RMS Delay Spread



Comparison to COBI:

- Over 11 dB performance benefit over COBI16+1
 - Expected even higher performance benefit against COBI16
- Estimated 15-18 dB performance benefit over COBI8
 - Little if any performance benefit over 868MHz FSK chips for COBI8

– PSSS 206 kbit/s – COBI16+1 235 kbit/s > 10000 Channel, no Rake receivers

PER Performance PSSS 250-400 868 MHz (BPSK/ASK) – Discrete Exponential Channel, 250ns RMS Delay Spread

- COBI16+1 235 kbit/s

Comparison to PSSS 206-440 868 MHz

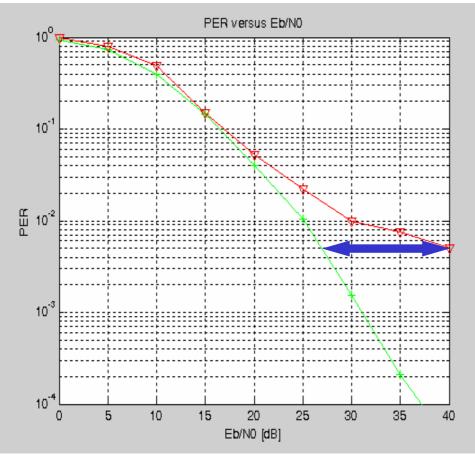
• No visible degradation of performance

> 10000 Channel, no Rake receivers

- PSSS 250 kbit/s

PER Performance PSSS 206-440 868 MHz (BPSK/ASK) – Discrete Exponential Channel, 370ns RMS Delay Spread

- COBI16+1 235 kbit/s

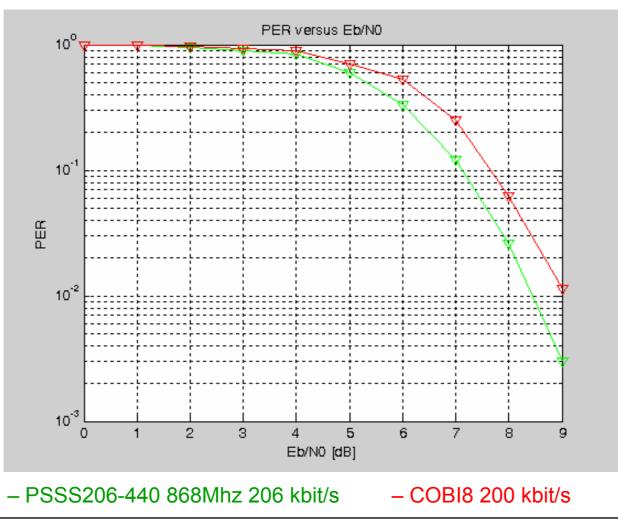

Comparison to COBI:

- Over 14 dB performance benefit over COBI16+1
 - Expected even higher performance benefit against COBI16
- Estimated 18-21 dB performance benefit over COBI8

> 10000 Channel, no Rake receivers

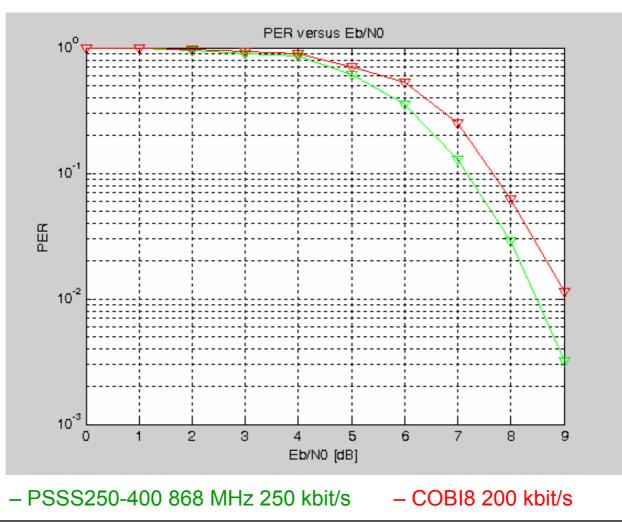
- PSSS 206 kbit/s

PER Performance PSSS 250-400 868 MHz (BPSK/ASK) – Discrete Exponential Channel, 370ns RMS Delay Spread

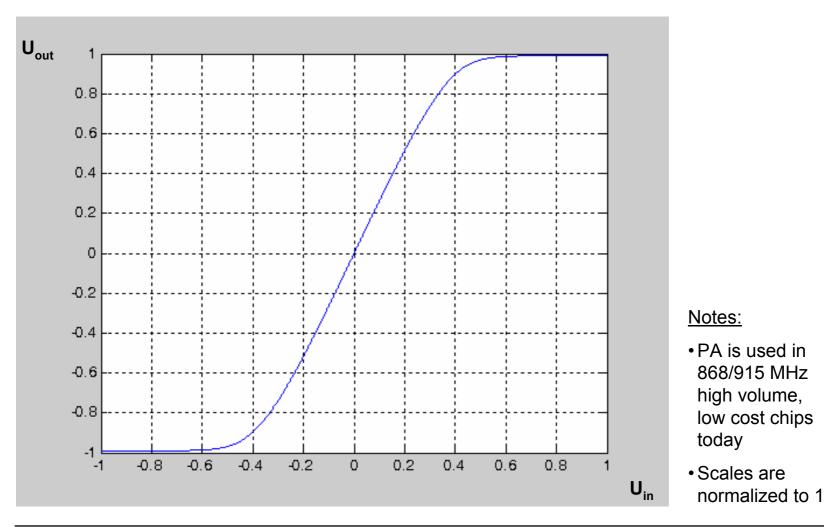


Comparison to PSSS 206-440 868 MHz

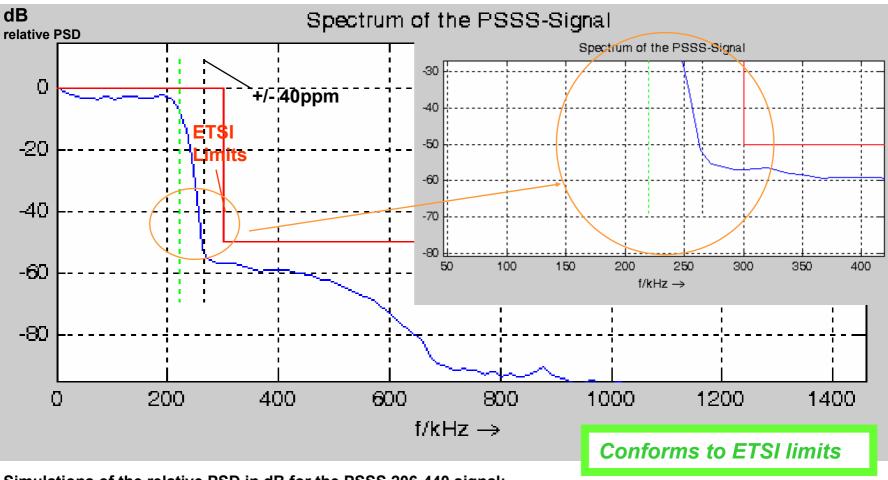
• No visible degradation of performance


– PSSS 250 kbit/s – COBI16+1 235 kbit/s > 10000 Channel, no Rake receivers

AWGN Performance PSSS 206-440 868 MHz

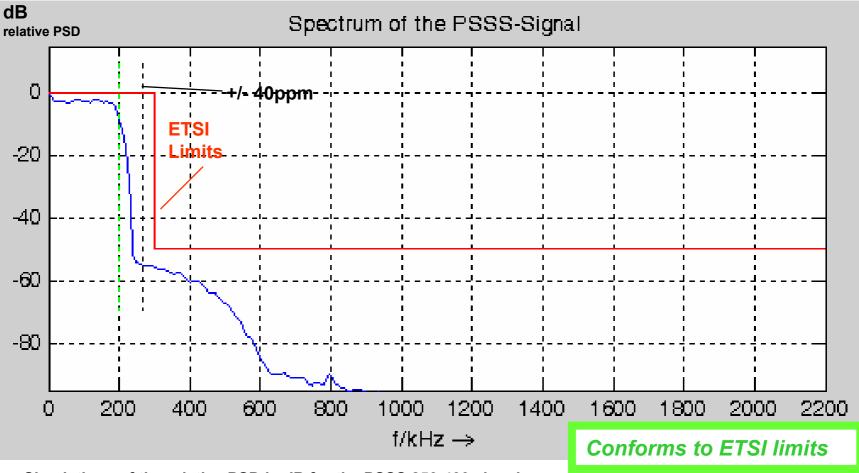

Slide 19 Andreas Wolf, DWA Wireless - Hans van Leeuwen, STS

AWGN Performance PSSS 250-400 868 MHz

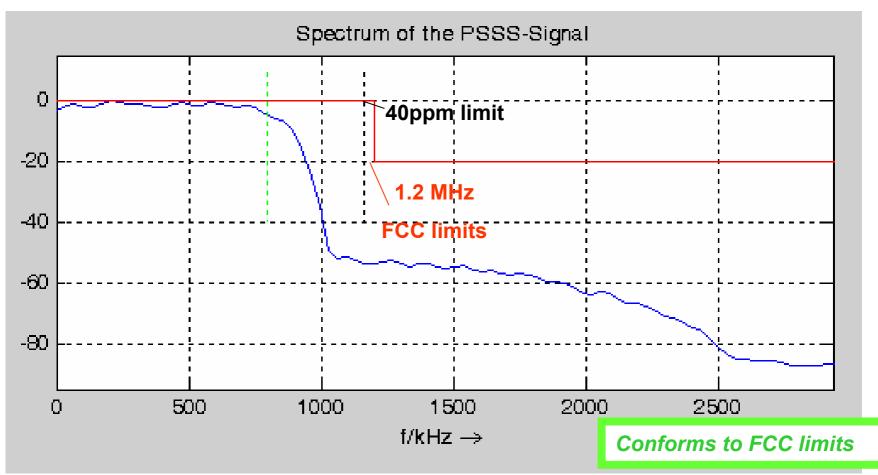


Slide 20 Andreas Wolf, DWA Wireless - Hans van Leeuwen, STS

Non Linear Transfer Function of a "Real World PA"



PSD for PSSS 206-440 868 MHz (in 600 KHz channel) Baseband pulse shaping non-linear "Real World PA"


Simulations of the relative PSD in dB for the PSSS 206-440 signal: With precoding, at 440 kchip/s, 206 kbit/s, +/- 40ppm, 50% PA drive, as specified in draft TG4b PHY text

PSD for PSSS 250-400 868 MHz (in 600 KHz channel) Baseband pulse shaping non-linear "Real World PA"

Simulations of the relative PSD in dB for the PSSS 250-400 signal: With precoding, at 400 kchip/s, 250 kbit/s, +/- 40ppm, 50% PA drive, as specified in draft TG4b PHY text

PSD for PSSS 250-1600 915 MHz (2 MHz channel) Baseband pulse shaping non-linear "Real World PA"

Simulations of the relative PSD in dB for the PSSS 250-1600 signal: With precoding, at 1,600 kchip/s, 250 kbit/s, +/- 40ppm, 50% PA drive, as specified in draft TG4b PHY text

Comparison of TG4b PHY modes

	PSSS 206-440 868 MHz	PSSS 250-400 868 MHz	PSSS 250-1600 915 MHz	COBI16 915 Mhz	COBI8 868 MHz	E16 868 MHz
Chiprate	440 kcps	400 kcps	1,600 kcps	1,000 kcps	500 kcps	400 kcps
Bitrate	206 kbit/s	250 kbit/s	250 kbit/s	250 kbit/s	250 kbit/s	100 kbit/s
Spreading	15x 32-chip seq.	20x 32-chip seq.	5x 32-chip seq.	1x 16-chip seq.	1x 8-chip seq.	1x 8-chip seq.
Pulse shaping	Square root raised cosine, r = 0.1	Square root raised cosine, r = 0.1	Square root raised cosine, r = 0.15	Halfsine	Raised cosine, r = 0.2	Raised cosine, r = 0.6
No. of base sequence	1	1	1	Unclear ⁴	2	Unclear ⁴
Relative MP performance (PER 1e-2) - 250 ns RMS - 370 ns RMS	- 1518 dB - 1821 dB	- 14.517.5 dB - 17.5 20.5 dB	- 17 19 dB - >> 20 dB	(COBI16+1) - 47 dB	(Used as reference) - 0dB - 0dB	Weaker then COBI8
Rake	Not required	Not required	Not required	Required ¹	Required ¹	Required
Modulation ³	BPSK / ASK	BPSK / ASK	BPSK / ASK	OQPSK + BPSK	OQPSK + BPSK	OQPSK + BPSK
Fully simulated in TG4b	Yes	Yes	Yes	No ⁶	No ⁶	No ⁶
Intellectual property	RAND-Z	RAND-Z	RAND-Z	Unclear ^{4, 5}	Unclear ^{4, 5}	Unclear ^{4, 5}
FCC / ETSI compliance	Yes	Yes	Yes	Yes	No ²	No ²
Conclusion	Highly Attractive	Highly Attractive	Highly Attractive	Less Attractive	Not Attractive	Not Attractive

Advantage Disadvantage

1: Proposed by IIR, but not yet fully simulated

(current simulation assumes ideal channel estimation)

2: No COBI variant presented in TG4b for 868MHz is ETSI compliant

3: TG4b PHY + IEEE802.15.4-2003 backward compatibility

4: IP for new coding table / correlator unclear

5: Unclear if IP in/from China for 100 kbit/s mode

6: E.g. idealized sync, no FD, change in coding

Attachments

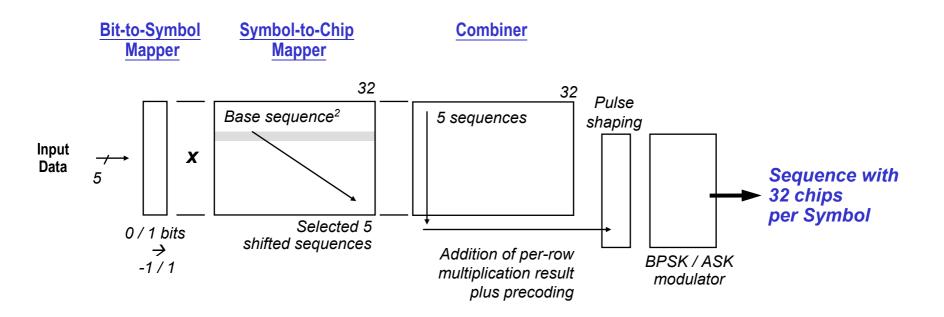
Key requirements for sub-1-GHz band PHY

• Bitrate over 200 kBit/s

- Number of permitted transactions/hr is insuffcient in IEEE802.15.4-2003 868 Mhz
 - 1% duty cycle at 20 kbit/s translates into typically only 600-800 transactions/hr
 - With > 200 kbit/s sufficient number of transactions/hr for our targeted applications
 - Disadvantage of 1% duty cycle limit turns into protection against interference
- Extension from 20/40 kbit/s extends total battery lifetime by 15-40%
- Visibly improved multipath fading robustness over IEEE802.15.4-2003 2.4 GHz
 - Improve coverage in "challenging" RF environments Especially commercial, industrial
 - Achieve PER $< 10^{-3}$ at channels with at least 1 µs delay spread (non-exponential channel models)

• Support of current RF regulatory regimes *plus* enable the use of extended bands

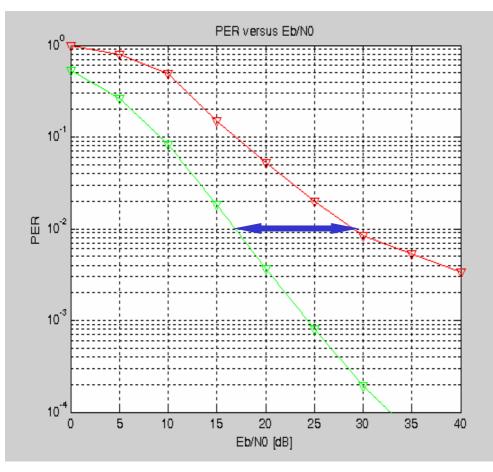
- Support 2 MHz wide channels in the USA and other countries were they are permitted
- Support of current 600 kHz band available at 1% duty cycle in Europe today
- Allow use of extended European bands and bands in other countries once they become available
 - Allow addition of additional 600 kHz channels as per current ETSI / ECC report (4/6 channels?)
 - Do not expect US-like wide, unrestricted bands or all egulatory domains
- Support of more flexible channel selection method to flexibly add support for more countries


• Backward compatibility to IEEE802.15.4-2003 (915/868 MHz)

- Interoperability when switched to 15.4-2003 mode
- No fully transparent backward compatibility as in 802.11b vs. 802.11 or 802.11g vs. 802.11b

• Low cost and low power consumption (!)

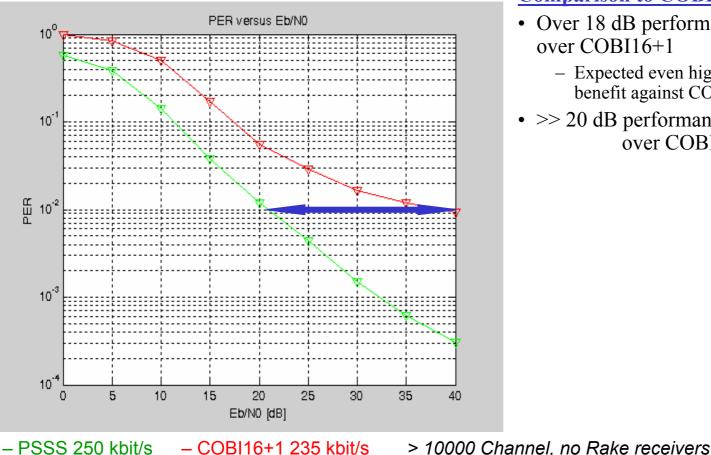
Source: Danfoss IEEE 15-04-327-01-004b; TG4b discussion in September 2004 meeting


PSSS 250-1600 915 MHz BPSK/ASK (5/32 bit/s/Hz)¹

...addition of multiple parallel sequences instead of selection of single sequence

1: Overview, please see TG4b PHY draft specification text and earlier versions of this document for details 2: Use of single base sequence simplifies implementation in Rx

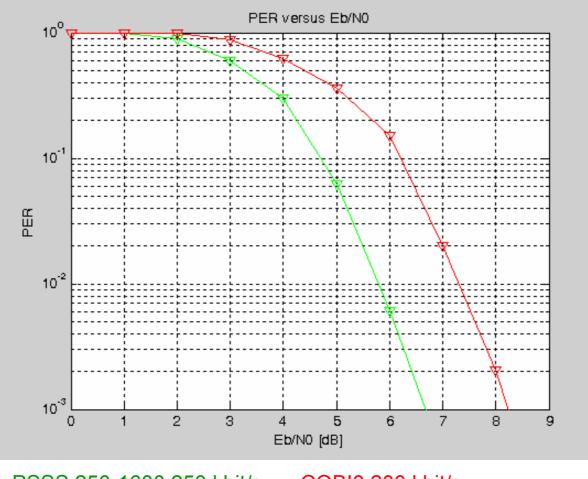
PER Performance PSSS 250-1600 915 MHz (BPSK) – Discrete Exponential Channel, 250ns RMS Delay Spread


Comparison to COBI:

- Over 13 dB performance benefit over COBI16+1
 - Expected even higher performance benefit against COBI16
- Estimated 17 19 dB performance benefit over COBI8

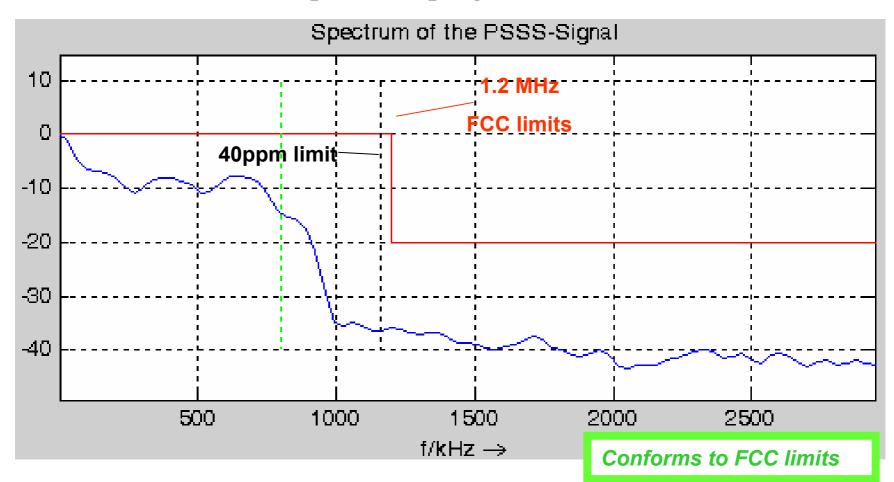
– PSSS 250 kbit/s – COBI16+1 235 kbit/s

> 10000 Channel, no Rake receivers

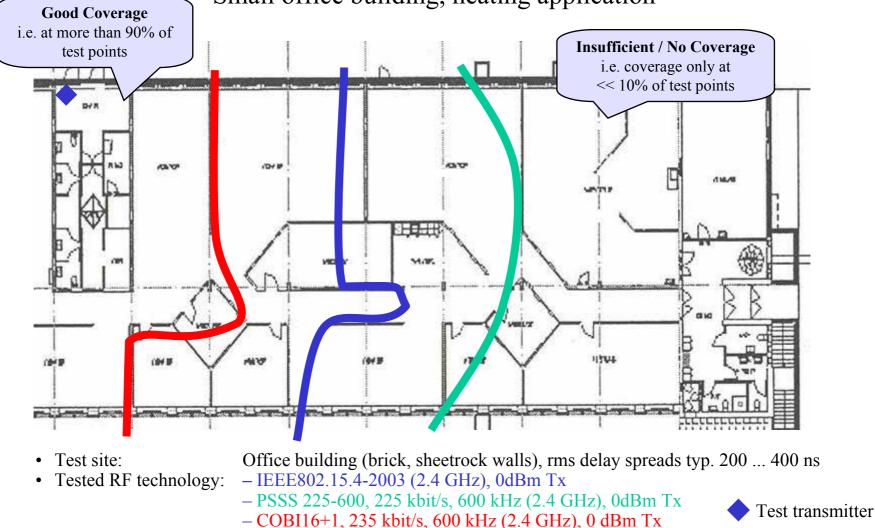

PER Performance PSSS 250-1600 915 MHz (BPSK) – Discrete Exponential Channel, 370ns RMS Delay Spread

Comparison to COBI:

- Over 18 dB performance benefit over COBI16+1
 - Expected even higher performance benefit against COBI16
- >> 20 dB performance benefit over COBI8


AWGN Performance PSSS 250-1600 915 MHz

- PSSS 250-1600 250 kbit/s - COBI8 200 kbit/s


January 2005

PSD for PSSS 250-1600 915 MHz with Precoding in 2 MHz channel Baseband pulse shaping non-linear RAPP model

Simulations of the relative PSD in dB for the PSSS signal: With precoding, at 1,600 kchip/s, 250 kbit/s, +/- 40ppm, 100% PA drive, as specified in draft TG4b PHY text

Results of first field measurements with PSSS and COBI16: Residential / light commercial environments – Small office building, heating application

Slide 33 Andreas Wolf, DWA Wireless - Hans van Leeuwen, STS