Switched beam antennas in millimeter-wave band broadband wireless access networks

IEEE 802.16 Presentation Submission Template (Rev. 8.3)

Document Number: IEEE S802.16-03/19
Date Submitted: 2003-07-16

Source:
J. Herrera, V. Polo, J. M. Martinez, Voice: +34 963879768
P. Sanchis, J. L. Corral, J. Marti Fax: +34 963877279
Universidad Politécnica de Valencia E-mail: jmarti@dcom.upv.es
Instituto ITACA, Edificio I-4
46022 - Valencia (SPAIN)

Venue:
IEEE 802.16 Session #26. WG meeting: Proposed New Concepts.

Base Document:
C802.16-03/09
<http://ieee802.org/16/docs/03/C80216-03_09.pdf>

Purpose:
Contribution to the proposed new concepts in Session #26

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.

Switched beam antennas in millimeter-wave band broadband wireless access networks

J. Herrera, V. Polo, J. M. Martinez, P. Sanchis, J. L. Corral, J. Martí

Universidad Politécnica de Valencia
OBANET IST-2000-25390

More information at
mailto:jmarti@dcom.upv.es
http://ist-obanet.upv.es
OUTLINE

• Motivation
 — OBANET IST-2000-25390 project
• Objectives
• Switched-Beam Antenna scenario
• Performance improvement
 — Interference reduction
 — Multi-path reduction
 — Antenna Gain control
• Protocol adaptation to SBA scenario
• Remarks and conclusion
MOTIVATION

• Broadband Wireless Access (BWA) Networks
 — High bit rates (>50 Mbps) only to operate in the millimetre-wave band (targeted band 40-43 GHz)
 — Frame duration 1 ms, channel size 28 MHz and M-QAM modulations formats target >50 Mbps
 — Natural and artificial conditions drastically impair at mm-wave frequencies: rain, vegetation, man-made obstacles

• Flexibility and Efficiency ➔ Smart Antennas
 — Dynamic antenna gain and coverage area
 — Reduced multi-path and interferences
 — Higher spectral efficiency and SDMA

Smart Antennas at 40 GHz?

MOTIVATION

Smart Antennas at 40 GHz

- **Adaptive antennas: DSP and RF/IF**
 - Very high speed DSPs (not yet available)
 - Beam-squint (radiation pattern depends on frequency)
 - High speed switches required for beam-switching.
 - Bulky hardware is required

Proposed approach

- **Switched-Beam Antennas (SBA)**
 - Simplified architectures: optical beamforming, Butler matrix
 - however, the proposed strategies are technology-independent
 - True-Time Delay is achieved ➔ no beam-squint
 - Ultra-fast switching times up to nanoseconds
OBJECTIVES

• SBA is the simplest smart-antenna technology at 40 GHz suited as first implementation

OBJECTIVE 1: To demonstrate the benefits of introducing SBA in BWA networks

• However, BWA protocols must be adapted to introduce SBA → overhead

OBJECTIVE 2: To propose a adaptation to introduce SBA scenario in the BWA protocols

OBJECTIVE 3: To introduce an strategy to reduce the overhead
SWITCHED BEAM ANTENNA SCENARIO

• Scenario defined fitting IEEE/ETSI draft standards (2001)
 — Operation frequency: 42.7 GHz
 — IEEE/ETSI fixed frame format
 — TDD and TDM/TDMA operation mode

• SBA control and performance evaluated
 — Interference and multipath reduction
 — Antenna gain control
 — Adaptation of BWA protocols reducing overhead
 — Pointing directions and beamwidths
PERFORMANCE OPTIMISATION

- **Interference reduction**
 - Outage probability as a function of the required C/I for different SBA configurations \((SLL^{{BS}} = 20 \text{ dB}, SLL^{{SS}} = 15 \text{ dB and } \Delta \phi^{{SS -3dB}} = 3^\circ)\) in the downlink direction.

Cellular reuse pattern:
- 2 Frequencies
- 2 Polarisations
PERFORMANCE IMPROVEMENT

• Interference reduction
 — C/I required to obtain an outage probability of 1% as a function of the radius of the coverage area for different SBA configurations

Higher order modulation formats can be employed in a larger coverage area

<table>
<thead>
<tr>
<th>$\Delta \phi_{-3dB}$</th>
<th>CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>1200 m</td>
</tr>
<tr>
<td>22.5°</td>
<td>2000 m</td>
</tr>
<tr>
<td>11.25°</td>
<td>>2500 m</td>
</tr>
</tbody>
</table>

For a BER=10^{-11} at 16-QAM (required C/I 21 dB)

Overall capacity enhancement
PERFORMANCE IMPROVEMENT

• **Multipath reduction**
 — BER improvement
 — Temporal dispersion of the channel is reduced
 — Easier equalisation → simplified wireless modem design

![Graph showing performance improvement](image)

Quality of service improvement
PERFORMANCE IMPROVEMENT

• Dynamic antenna control
 — Useful to counteract temporary channel impairments
 — Less interferences than Power Control techniques
 — Sector reconfiguration possible

<table>
<thead>
<tr>
<th>MODE</th>
<th>$\Delta \phi_{-3dB}$</th>
<th>ΔG</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>22.5°</td>
<td>0 dB</td>
</tr>
<tr>
<td>II</td>
<td>11.25°</td>
<td>3 dB</td>
</tr>
<tr>
<td>III</td>
<td>5.65°</td>
<td>6 dB</td>
</tr>
</tbody>
</table>

Availability and Flexibility improvement
PROTOCOL ADAPTATION

- **Broadcast and contention access**
 - Clearly unfeasible in the SBA scenario
 - Solution: replication of broadcast and content intervals in each beam
 - Introduces overhead, specially the broadcast of control information

- **Adaptation to the SBA scenario**
 - Slot-based beam switching approach preferred
 - Replication minimization using location

standard downlink subframe

- **TDM portion in robustness order**
 - QPSK, 16-QAM, 64-QAM

Slot-based beam-switching approach

IEEE 802.16 session #26, WG meeting: proposed new concepts 21-25 July, 2003 San Francisco
PROTOCOL ADAPTATION

- **Map minimisation**
 - Local DL_MAP and UL_MAP to each beam pointing direction
 - Location may be easily obtained in the SS registration
 - Only SS present in each beam are mapped in the local DL_MAP
 - Only SS present in each beam are allocated in the local UL_MAP
 - Different preamble sequences

DL_MAP and UL_MAP format

Low impact for high loads

IEEE 802.16 session #26, WG meeting: proposed new concepts 21-25 July, 2003 San Francisco
REMARKS AND CONCLUSION

• Several strategies making use of beam-forming and fast beam-switching capabilities are possible with adaptive beam-formed BS antennas

• The use of such strategies lead mainly to:
 — interference reduction, capacity improvement
 — better quality of service
 — improved system flexibility

• These benefits are of key importance for next generation multimedia fixed broadband wireless access networks
REMARKS AND CONCLUSION

• A strategy to adapt the SBA scenario and to minimize the protocol overhead introduced in BWA protocols has been proposed:
 — slot-based beam-switching
 — minimization using location
 — efficient for high-loads

Thanks for your attention
More information at http://ist-obanet.upv.es