
2005-11-17 IEEE C802.16g-05/025r4

Project IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>
Title A Generic Packet Convergence Sublayer (GPCS) for Supporting Multiple Protocols over 802.16

Air Interface
Date
Submitted

2005-11-17

Source(s) Lei Wang, Brian Petry, Yair Bourlas, Kenneth
Stanwood,
Cygnus Communications Inc.
Phillip Barber,
Huawei
GuoQiang Wang, Mo-Han Fong,
Nortel Networks

Mary Chion,
ZTE San Diego

Voice: 760-448-4168
Fax: 760-448-1989
lwang@cygnuscom.com
bpetry@cygnuscom.com
ybourlas@cygnuscom.com
kstanwood@cygnuscom.com
pbarber@broadbandmobiletech.com
guoqiang@nortel.com
mhfong@nortelnetworks.com
marychion@ztesandiego.com

Re: This is a follow-up contribution on the proposal of a generic packet convergence sublayer.
Abstract As requested by 802.16g during the comments resolution discussions in session #39, we are

submitting a follow-up contribution on our Generic Packet Convergence Sublayer proposal i.e.,
C802.16g-05/25, by presenting additional supporting materials and integrating suggestions and
comments received from other members.
We are concerned that the 802.16 protocol cannot easily be extendable to transport new
protocols over the 802.16 air interface. It would appear that a convergence sublayer is needed
for every type of protocol transported over the 802.16 MAC. Every time a new protocol type
needs to be transported over the 802.16 air interface, the 802.16 standard needs to be modified
to define a new CS type. We need to have a generic Packet convergence sublayer that can
support multi-protocols and which does not require further modification to the 802.16 standard
to support new protocols. We believe that this was the original intention of the Packet CS.
Furthermore, we believe it is difficult for the industry to agree on a set of CS’s that all devices
must implement to claim “compliance.” Generic Packet Convergence Sublayer (GPCS) solves
these problems.

Purpose The purpose of this contribution is to define a Generic Packet Convergence Sublayer for
Supporting Multiple Protocols over 802.16 Air Interface.

Notice This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion
and is not binding on the contributing individual(s) or organization(s). The material in this
document is subject to change in form and content after further study. The contributor(s) reserve
(s) the right to add, amend or withdraw material contained herein.

Release The contributor grants a free, irrevocable license to the IEEE to incorporate material contained
in this contribution, and any modifications thereof, in the creation of an IEEE Standards
publication; to copyright in the IEEE’s name any IEEE Standards publication even though it
may include portions of this contribution; and at the IEEE’s sole discretion to permit others to
reproduce in whole or in part the resulting IEEE Standards publication. The contributor also
acknowledges and accepts that this contribution may be made public by IEEE 802.16.

1



2005-11-17 IEEE C802.16g-05/025r4
Patent
Policy and
Procedures

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures
<http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may
include the known use of patent(s), including patent applications, provided the IEEE receives
assurance from the patent holder or applicant with respect to patents essential for compliance
with both mandatory and optional portions of the standard." Early disclosure to the Working
Group of patent information that might be relevant to the standard is essential to reduce the
possibility for delays in the development process and increase the likelihood that the draft
publication will be approved for publication. Please notify the Chair
<mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented
technology (or technology under patent application) might be incorporated into a draft standard
being developed within the IEEE 802.16 Working Group. The Chair will disclose this
notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.

2



2005-11-17 IEEE C802.16g-05/025r4

A Generic Packet Convergence Sublayer Supporting Multiple
Protocols over 802.16 Air Interface

1. Background
As requested by 802.16g Task Group during the comments resolution discussions in session #39, we are
submitting a follow-up contribution on our Generic Packet Convergence Sublayer (GPCS) proposal i.e.,
C802.16g-05/25, by presenting additional supporting materials and integrating suggestions and comments
received from other members.

2. References
[802.16-2004] : IEEE-Std 802.16 – 2004
[16e/D12] : IEEE 802.16e/D12
[16cor1/D5] : IEEE 802.16-cor1/D5
[16g-05/008r1] : IEEE 802.16g-05/008r1

3. Problems with the Current 802.16 Packet Convergence Sublayer
This section describes some problems with the currently-defined packet convergence sublayers.

3.1.Not Upper-Level Protocol Agnostic
A problem with the 802.16 standard is that it tries to address upper layer protocol issues (see section 5.2 in
802.16-2004). For each upper layer protocol, it defines how fields in an upper layer protocol header are used to
determine the 802.16 scheduling service type, and thus the 802.16 connection. And the standard goes further to
define how upper layer headers should be encoded (e.g., compressed). Our contention is that such issues are
best left outside the 802.16 standard.
The authors contend it is difficult for the industry to accept a set of 802.16 convergence sublayers that all
devices must implement to be called “compliant.” For example, if Ethernet CS, why should a phone have to
implement Ethernet frame formats? And if IPv4: why should all 802.16 devices need to participate in IP
address assignment, IP mobility, tunneling, etc? And if a vendor implements a proprietary upper layer protocol,
how can its 802.16 layer be tested to be compliant? This contribution suggests that a generic packet
convergence sublayer can help by simplifying a “compliance profile” that is independent of the upper layer
protocol. Other bodies such as the WiMAX Forum may benefit from this simplification.
By way of example, some other (successful) link-layer protocol standards which do not address upper layer
protocol-header-mapping, encoding and compression are: 802.3, 802.2, 802.11, Frame Relay and packet-over-
SONET (POS) embodied in Generic Framing Procedures of ITU-T G.7041/Y.1303. Also, some yet-to-be-
successful link protocols follow the same convention of leaving the upper layer standards body to define its
encapsulation: Infiniband, 802.17 (Resilient Packet Ring). For instance, IP datagram encoding and
compression for specific link layers is typically left for the IETF to define.
A simple example to consider is IP over Ethernet, which is fairly well understood. The IEEE 802.3 and 802.2
standards do not define how IP packets are mapped to Ethernet links or how IP addresses are assigned or
mapped to Ethernet destination addresses. Those functions are specifies by the community, using the well-
known protocols ARP and DHCP. Ethernet has a simple way of transporting priority bits (P-bits) in each
packet (see 802.1Q) and QoS-aware Ethernet switches use them to schedule packets in the presence of
congestion. But 802.1Q does not specify how the IP layer uses the P-bits. Similarly, we do not think 802.16
needs to specify how IPv4 TOS and DSCP fields map to 802.16 scheduling service types (see section 802.16-
2004, section 11.13.19.3). However, the authors of this contribution recognize that Ethernet-based QoS took a
long time to “get right,” and recognize the efforts of 802.16 to “get it right the first time.”

3



2005-11-17 IEEE C802.16g-05/025r4
Other example IETF RFCs that explain how IP uses a link layer protocol are RFC2464 Transmission of IPv6
Packets over Ethernet Networks, RFC2625 IP and ARP over Fibre Channel, RFC2516, A method for
transmitting PPP over Ethernet (PPPoE). Also refer to work currently under way in the IETF working groups,
IP-over-Infiniband (ipoib) and IP-over-Resilient Packet Ring (iporpr).

3.2.No Standard Service API
The 802.16 standard not does specify a thorough MAC service API. Although the MAC SAP is present in
Figure 1 of 802.16-2004 (copied below, Figure 1), the MAC service definition found in Annex C is
“informative” rather than normative. Instead of a standard service interface definition, 802.16 “prefers” to
define “convergence” with upper layer protocols. We think the reason the standard instead chose the
convergence layer approach was to foster interoperability by explicitly stating how upper layers’ QoS
definitions must map to 802.16 scheduling and security services. While this was a noble goal, we think it
turned out to be too complicated and the standard as it stands now does not define all the procedures necessary
to build many types of interoperable systems.
A standardized service API would provide a clean way to expose 802.16 services to the next layer in a protocol
stack, or to 802.16-aware applications. Citations of some other MAC-layer service APIs are: 802.3-2002
section 2, the “MSAP” concept in IEEE Std 802-2001 (Figure 1), IEEE Std 802.11, 1999, section 6.2.
The GPCS can provide access to a standard service API for the case when all classification functions is NULL.
Note this is equivalent to what used to be defined as “No Convergence Sublayer” before it was removed in
IEEE 802.16-cor1/D5. However, GPCS does not attempt to define a standard service API.

Figure 1: 802.16 Layering Model (copied from 802.16-2004)

3.3.Only One Upper Protocol per per Connection
The 802.16 convergence sublayers do not define the capability for multiple upper layer protocols to transport
the SDUs on a single 802.16 connection. A connection ID (CID), is a valuable resource in both base stations
and subscriber stations. An 802.16 system should not be forced to open a different CID for each upper layer
protocol if packets for upper layer protocols have the same QoS requirements (802.16 scheduling service

4



2005-11-17 IEEE C802.16g-05/025r4
types). The generic convergence sublayer provides a simple way to transport multiple protocols over a single
802.16 connection.

3.4.Poor Extendibility
It would appear that a convergence sublayer (CS) is needed for every type of protocol transported over the
802.16 MAC. Every time a new protocol type needs to be transported over the 802.16 air interface, the 802.16
standard needs to be modified to define a new CS type. A good example of the proliferation of CS’s is found in
Section 11.13.19.1 CS Specification. In 802.16e/D12, there are 4 new convergence sublayers that have been
added in order to support IP or Ethernet/802.3 with IETF IETF header compression protocols ROHC and
ECRTP. This is in addition to the 8 Convergence Sublayers already defined in 802.16 – 2004, that brings the
total of Convergence Sublayers in 802.16e to 12!
802.16 should define an access method that allows for off-the-shelf components, those not even “aware” of
802.16, such as bridges, routers, NAT gateways, and classification engines to be used as components to build
802.16 compliant systems. For instance, bridges can operate just on 48-bit MAC addresses and logical port
numbers, routers operate on IP addresses and logical port numbers, NAT gateways translate IP headers without
knowledge of underlying link technologies, and classification subsystems can operate on a variety of upper-
layer protocol packets to identify QoS flows.
Since the existing 802.16 convergence sublayers attempt to define upper layer protocol header interpretation,
the 802.16 layer needs to change whenever upper layer systems are enhanced. This model is not extensible.
802.16 SAP layering should attempt to isolate itself from upper layers so upper layers can be enhanced in
standardized or proprietary was and still operate effectively over 802.16.

3.5.Repeating Upper Layer Functions
In the current 802.16 specification, address-based classification rules define how data packets of different users
are mapped to different CIDs, so that the differentiated QoS and/or security provisions can be provided.
Particularly, it is critical for the downlink (DL) because the BS typically would use the address-based
classification rules to map each packet to a different SS/MS in a point-to-multipoint topology.

The address-based classification rules require the current 802.16 convergence sublayer to maintain the mapping
information between upper-protocol-defined addresses (e.g., IP or Ethernet) and CIDs. This ultimately forces
the 802.16 CS to implement some upper layer functions.

For example, the IPv4 CS at BS maintains a “mapping state” for IP addresses to CIDs. Whenever there is a
change in IP addresses, the mapping state needs to be updated. In non-802.16 systems and protocol stacks,
upper layer address assignment and mapping to link layer entities is typically part of a routing function at the
network layer.

A trouble with Ethernet headers is the size. So 802.16 has attempted to define a CS PDU format to deal with
compress-header Ethernet PDUs (see section 5.2.7 of IEEE-802.16e/D12. Fields in the Ethernet header and
additional fields inside the Ethernet payload (e.g., IP header and IP with mobile-IP header) complicate the
classification process. Rather than pull-in Ethernet classification to 802.16, it would seem better to enable a
system to classify an Ethernet packet before it is compressed. GPCS leaves the choice of classification method
outside of 802.16.

Since upper layer protocol (ULP) addresses are used for some 802.16 packet CS classification rules, the packet
CS layers must participate in upper layer protocol address-management procedures. When a ULP system
changes addresses (mobility re-registration), translates addresses (NAT) or tunnels with nested headers (IPsec
and Mobile IP), the 802.16 packet CS must be informed of changes to maintain consistent classification. The
authors contend when layers “intertwine,” it is difficult to write a specification that serves a wide enough
variety of implementation and ULP layering options, and eventually industry interoperability will suffer.

Also, note that 802.1D bridging can be implemented over 802.16 without Ethernet convergence. For instance,

5



2005-11-17 IEEE C802.16g-05/025r4
a BS can implement a bridge of VLANs between resilient packet ring and a set of 802.16 non-Ethernet-capable
subscribers. 802.16 should not preclude the configuration of such topologies.

The authors of this contribution contend that although Ethernet Packet CS is great for certain classes of devices,
interoperable “convergence” is difficult to define because there are so many implementation alternatives. So,
Ethernet usage is best left to define “above” 802.16 so an Ethernet-based device can claim 802.16 compliance
whether it implements “standard” Ethernet Packet CS or “proprietary” Ethernet CS. 802.16 should not define
the use of Ethernet, or preclude flexibility in proprietary implementations.

3.6.Lack of Support for Multiple Header Compression Schemes
Furthermore, we see an architectural issue related to header compression protocols. For example, ROHC
compresses all the information used by 802.16 to classify a packet to a CID and thus requiring that the
implementation of ROHC (from standardization perspective at least) must be done after the 802.16
classification and thus within the 802.16 protocol stack. Note that 802.16e/D12 attempts to define classification
methods for multiple header compression schemes. But it does not allow the use of proprietary header
compression methods. The authors of this contribution claim that inclusion, and even mention, of header
compression schemes, over-complicates the standard and leaves the standard in a state where new header
compression schemes force revision of the standard. We think this will ultimately confuse the industry, and
complicate compliance and interoperability tests. The 802.16 standard should allow for any header
compression scheme to claim “compliance.” Still, compatible and interoperable header compression needs to
be defined, and classification methods need to be implemented. But the authors of this contribution contend the
procedures do not need to be defined in the 802.16 standard.

4. Generic Packet Convergence Sublayer (GPCS)
To address problems with the current 802.16 packet convergence sublayer, cited in section 3, we propose a
Generic Packet Convergence Sublayer (GPCS), defined as follows:
o GPCS provides a generic packet convergence layer. This layer uses the MAC SAP (see 802.16

Annex C) and exposes a new SAP to GPCS applications
o GPCS does not re-define or replace other convergence sublayers. Instead, it provides a SAP that is

not protocol specific
o The basic function of the GPCS is still classification. It participates in the process to map upper

layer packets (carried in 802.16 MAC SDUs) to appropriate 802.16 connections. But with GPCS,
upper layer packet parsing (header inspection and interpretation to locate and extract fields relevant
to classification rules) happens “above” GPCS. The results of packet parsing are classification
parameters given to the GPCS SAP for “parameterized classification,” but upper layer packet
parsing is left to the GPCS application

o GPCS defines a set of SAP parameters as the result of upper layer packet parsing. These are passed
from upper layer to the GPCS in addition to the data packet. Each is defined in later sections of this
contribution

o LOGICAL_PORT_ID
o COS_ID (Class of Service ID)LOGICAL_FLOW_ID
o PROTOCOL_TYPE
o GPCS provides an optional way to multiplex multiple layer protocol types (e.g., IPv4, IPv6,

Ethernet) over the same 802.16 connection. We call this MULTIPROTOCOL_ENABLE, a feature
which can optionally be activated per CID. The capability of supporting this feature is indicated in a
TLV parameter of the REGSBC messages.

o For vendors to build interoperable equipment, each upper layer protocol type needs an interface

6



2005-11-17 IEEE C802.16g-05/025r4
specification (e.g., IPv4 over 802.16, or Ethernet over 802.16). Such a standard specification can be
developed by 802.16 or any other standard bodies, e.g., WiMAX, or IETF. Essentially, some of
those specificaitons could be equivalent in function to protocol-specific packet convergence
sublayers defined in today’s 802.16 standard.

802.16 PHY

IPv4
CS

(a) Protocol structure with the service-specific
Packet Convergence Sublayer

(b) Protocol structure with the proposed Generic
Packet Convergence Sublayer (GPCS )

802.16 MAC

Ethernet

CS
abc
CS

...

IP Ethernet abc...Upper
layers

802.16
layers

802.16 PHY

IPv4
over
16

802.16 MAC

Ethernet

over
16

abc
over
16

...

IP Ethernet abc...
Upper
layers

802.16
layers

802.16 GPCS

Multiple
protocols
over 16

Z...

SAP

SAP SAP SAP

X Y

802.1D
Over 16

802.1D
Bridge

Figure 2: GPCS Layering Model
Figure 2 illustrates GPCS laying similarity to existing packet CS layers. Such a protocol structure of link layer
interface to the upper layers has been widely used in some successful link layer protocol standards, e.g., 802.3,
802.2, 802.11, 802.17, Frame Relay, etc.
Comparing to the current 802.16 packet convergence sublayer, the proposed GPCS:
1. Decouples the 802.16 link layer from the higher layers protocols thus enabling the transport of new

multiple upper layer protocol data over 802.16 air interface without requiring any modifications to
802.16 protocol

2. Allows the 802.16 CS to conduct the classification function without the need to interpret (parse)
upper layer protocol headers, by allowing the higher layers protocols to pass some available
information to the 802.16 CS

3. Avoids the repetitions of upper layer functions at the 802.16 CS
4. Allows multiple protocols over the same 802.16 MAC connection
5. Significantly simplifies the 802.16-comformance test of the packet convergence sublayer, by

pushing the solutions to these problems to the upper layer. Although the generic convergence
sublayer does not solve interoperability issues for Ethernet-bridging-oriented devices, or IPv4-
oriented devices, GPCS provides opportunities for experts of upper protocols, e.g., experts from
Ethernet community and experts from IP community such as IETF, to review and adopt standards
for using 802.16 to transport IP with differentiated services. Simple devices that have neither
Ethernet nor IP, nor one of the dozen 802.16 convergence sublayers, can use 802.16 with
GPCS and be called “compliant” with 802.16.

7



2005-11-17 IEEE C802.16g-05/025r4
A Generic Packet Convergence Sublayer (GPCS) would allow us to decouple the 802.16 link layer protocol
from the higher layer protocols. In other words, instead of forcing 802.16 to know much about all the protocols
it caries and possibly repeat some of the higher layers protocols functions within the 802.16 layer, the higher
layers protocols need only to pass few parameters to enable 802.16 to classify the SDU.
To enable upper protocol independence, we propose two parts: parameters for the 802.16 SAP for the
convergence sublayer, and an option per-SDU field prepended to each MAC SDU.

4.1.GPCS SAP Parameters
The GPCS SAP is embodied in two primitives, GPCS_DATA.request and GPCS_DATA.indication, which are
defined in the normative section of this contribution. The proposed GPCS SAP parameters enable the upper
layer protocol to generically specify 802.16 services without the need for the 802.16 layer to interpret upper
layer protocol headers. In other words, since the SAP parameters are explicit, the parsing portion of the
classification process is the responsibility of the upper layer. The SAP parameters need to be specified in the
standard to provide an interface point where compliance can be measured independent of the upper layer
protocol type (Ethernet, IPv4, etc.).
Figure 3 depicts the GPCS SAP parameters model. The figure intends to show how GPCS parameters are
chosen in a system. It illustrates that LOGICAL_PORT_ID and COS_ID abstractions can be implementation-
specific, locally-defined constructsLOGICAL_FLOW_ID is a locally-define construct. We do not think that
LOGICAL_PORT_ID and COSFLOW_ID needs to have a code-points assigned and each code-point usage
explained in a standard. The reason for such abstraction is to enable a wide variety of system configurations
above the GPCS SAP that can be combined in various ways. Off-the-shelf components and subsystems can
provide bridging, routing and parsing functions without adhering to a standard. The number of bits and
numeric assignments of those parameters areis left to the implementation. However, a GPCS implementation
must directly map LOGICAL_FLOW_ID to exactly one 802.16 service flow and thereby, exactly one
connection.
Since the GPCS SAP carries abstract parameters, GPCS SAP compliance does not require specific parameter
values be standardized. Rather, cCompliance must be measured by the results of GPCS classification. For
instance, the GPCS layer in a given vendor’s system generates a CID with a certain security profile and 802.16
scheduling service type under known conditions, employing either standard packet-parsing convergence or a
proprietary method. A compliance tester can then validate that the CID’s security profile is operating correctly
and the scheduling service is delivering the required throughput and latency. With GPCS, 802.6/GPCS
compliance can be tested independently of specific upper layer classification methods. Without GPCS, 802.16
must define convergence and classification for each method that deserves interoperability and thus compliance.
Considering the variety of possible upper layer protocol stack configurations, and the possibility of proprietary
methods, it is difficult if not impossible for all “deserving” systems to claim 802.16 compliance without GPCS.
Note that Figure 3 does not show where header compression is performed. We believe that header compression
is a facility that is orthogonal to classification and is best defined separately from the convergence process. For
example, a system implementing IPv4 with ROHC could implement header compression in the “Upper Layer
Protocol” or a compressor engine could be inserted just below the “Parser/Classifier.” Either configuration
could result in an ROHC-interoperable system.
Also note that a system could define a null function for “Destination Lookup,” “Parser/Classifier” and even
“Generic Classifier.” The upper protocol, or “application” in such a system must be 802.16-aware and provide
direct access to the MAC SAP. For instance, a video-over-802.16 device need not define Ethernet or IP
convergence function. Other standards could build on 802.16 GPCS, and proprietary systems could be defined.
Such systems could be called “Classification Free.” The authors think it would be great if they all could achieve
802.16 compliance without requiring modifications to the 802.16 standard.

8



2005-11-17 IEEE C802.16g-05/025r4
Upper Layer Protocol

MAC SAP

The System “knows”
the protocol typeP

a
c
k
et

P
R
O
T
O
C
O
L
_
T
Y
P
E

Destination Lookup (routing )
e.g., Source, Destination, TCP Port

Number, VLAN tag, etc .

Parser/Classifier

P
a
c
k
e
t

L
oc
al
In
fo
rm
a
tion

P
R
O
T
O
C
O
L
_T
Y
P
E

P
a
c
k
e
t

L
O
G
IC
A
L
_F
L
O
W
_ID

P
R
O
T
O
C
O
L
_T
Y
P
E

GPCS

C
ID

802.16 Scheduling Service

S
D
U

A route and/or bridge
lookup engine. It
“found out” about
802.16 end points
after registration and
service flow
establishment

Can employ any form
of packet inspection
to determine class of
service

Does not parse the
packet, but operates
only on parameters

E.g ., Appendix C

SF Profile , inc luding
UGS, BE, rtPS,
nrtPS, extended rtPS

GPCS SAP

Same work
as Service-
Specific CS

9



2005-11-17 IEEE C802.16g-05/025r4
Upper Layer Protocol

MAC SAP

The System “knows”
the protocol typeP

a
c
k
et

P
R
O
T
O
C
O
L
_
T
Y
P
E

Destination Lookup (routing)
e.g., Source, Destination, TCP Port

Number, VLAN tag, etc.

Parser/Classifier

P
a
c
k
e
t

L
O
G
IC
A
L
_P
O
R
T
_ID

P
R
O
T
O
C
O
L
_T
Y
P
E

P
a
c
k
e
t

L
O
G
IC
A
L
_P
O
R
T
_ID

P
R
O
T
O
C
O
L
_T
Y
P
E

C
O
S
_
ID

GPCS

C
ID

802.16 Scheduling Service

S
D
U

A route and /or bridge
lookup engine. It
“found out” about
802.16 end points
after registration and
service flow
establishment

Chooses a locally-
defined port number

Can employ any form
of packet inspection
to determine class of
service

Chooses a locally-
defined class-of-
service ID

Does not parse the
packet, but operates
only on parameters

E .g., Appendix C

SF Profile , inc luding
UGS, BE, rtPS ,
nrtPS , extended rtPS

GPCS SAP

Figure 3: GPCS SAP Parameters Model
GPCS defines SAP parameters abstractly because the authors think their use in a local system is outside the
scope of the 802.16 standard. For instance, bit width, code points, error checking, programming language and
operating system bindings are not specified. But PROTOCOL_ID, which since it can optionally be transmitted
between 802.16 end points, needs to have code points assigned (such as Ethernet, PPPoE, IPv4, IPv4-ROHC,
IPv6, etc.).

10



2005-11-17 IEEE C802.16g-05/025r4
Upper Layer Protocol

MAC SAP

P
a
c
k
e
t

De-Mux Function

P
a
c
ke
t

P
R
O
T
O
C
O
L
_
T
Y
P
E

GPCS

C
ID

802.16 MAC

S
D
U

Has a table to lookup
ULP SAP from
PROTOCOL_TYPE

Extracts
PROTOCOL_TYPE
from DSX context or
from SDU

E.g., Appendix C

GPCS SAP

Figure 4: PROTOCOL_TYPE Usage by Receiver
SAP Parameters:

PROTOCOL_TYPE. The protocol type field identifies the upper layer protocol that is immediately
above the 802.16 protocols. If MULTI_PROTOCOL_ENABLE is activated, the
PROTOCOL_TYPE shall be also carried over-the-air in every SDU, so the 802.16 receiver can
demultiplex an SDU and invoke the appropriate upper layer protocol. If
MULTIPROTOCOL_ENABLE is not activated, an 802.16 CID can carry only one protocol type,
and the PROTOCOL_TYPE field is only communicated during connection establishment. It is thus
analogous to the “ethertype” field in an Ethernet packet (http://www.iana.org/-
assignments/ethernet-numbers) or the 16-bit PPP data link (DL) layer protocol field in
PPP packets (http://www.iana.org/assignments/ppp-numbers)1. The authors
recommend that 802.16 start a new IANA registry of GPCS protocol numbers. Note that the
Ethernet numbers probably should not be used because it has no Ethernet code point which could
mean Ethernet-over-802.16. PPP protocol numbers aren’t good either because although they include
Ethernet, ROHC, IP, etc., it does not include a protocol number for PPP.
Note that GPCS with MULTIPROTOCOL_ENABLE is just about like Ethernet Packet CS except
no Ethernet addresses are transported.

LOGICAL_FLOW_ID. This parameter is a locally-assigned number, unique within a GPCS
implementation. A GPCS implementation must have the capability to map this parameter directly to
a service flow ID (SFID). A GPCS upper layer is expected to establish an 802.16 service flow using
the Add_Service_Flow.response (ASF.response) (see section 14.5.6.4.4.2). The upper layer uses the
SFID in the ASF.response to chose the appropriate LOGICAL_FLOW_ID.

LOGICAL_PORT_ID. A port number that is output from a bridging or routing function. It is locally
assigned and not exchanged between 802.16 end-points. For instance, an 802.1D bridge agent in a BS
could discover a connection to a specific SS and assign a LOGICAL_PORT_ID number to that
connection plus SS entity. The LOGICAL_PORT_ID can thus become a destination link for an 802.1D
bridge. It could transact spanning tree and GARP messages and relay and filter packets based on 48-bit
802 MAC addresses and VLAN tags. The exact mechanism for how this is done is left to the
implementation. In 802.1D terminology, the LOGICAL_PORT_ID could be called a “Bridge Port ID,”
which a locally-assigned number. Note that the process for connection establishment on the air interface
is defined in 802.16, but apart from Annex C, the end-point’s process to communicate service flows and

1 Note the wide variety of header-compression protocol types defined for PPP. Since PPP is intended for bandwidth-constrained links, it seems to
have very similar header compression requirements as 802.16. Also note the set of code points defined for various bridging functions.

11



2005-11-17 IEEE C802.16g-05/025r4
connections is not. An 802.1D compliant bridge can implement SS and connection discovery however
it needs to, and 802.1D-bridging-over-802.16 can still be standardized and interoperable.
COS_ID (Class of Service ID). A class of service identifier output from a packet-parsing classification
function. The class of service could simply identify an 802.16 scheduling service type. Alternatively, a
system could define it as a superset of 802.16 scheduling services, and perform local scheduling and/or
queuing based on the value. So, instead of specifying COS_ID to mean exactly the 802.16 scheduling
service type, it is left as an abstract locally-defined identifier. In either case, an implementation of the
“Generic Classifier” takes the COS_ID as input and uses it to determine a CID with matching 802.16
scheduling services.

MULTI_PROTOCOL_ENABLE. This parameter is not shown in Figure 3. A local system can
optionally choose to activate this feature to enable multiple PROTOCOL_TYPEs to be carried over
a single CID. MULTI_PROTOCOL_ENABLE is useful for devices that are constrained to
implement a small number of CIDs yet need to carry a variety of protocols using the same 802.16
scheduling service type. For instance, a single best-effort (BE) connection could carry statistically
multiplexed packets of IPv6, IPv6-ROHC and Ethernet PROTOCOL_TYPEs.
SDU and Length. GPCS has SDU and SDU-length parameters, which are the same as the
corresponding parameters in Annex C, MAC_DATA.request and MAC_DATA.indication.

5. Application Examples of the Proposed Generic Packet CS (GPCS)
This section describes some examples of how GPCS is used, particular for two upper protocols that have lots of
interest: Ethernet packets, IPv4, and ROHC header compression.

12



2005-11-17 IEEE C802.16g-05/025r4
5.1.IPv4-ROHC over GPCS

IP Datagram

802.16 SDU

GPCS SAP

Maps IP addresses,
TOS/DSCP field, etc.

IP Mobility , Routing, etc.

802 .16 Scheduling Service

Outside of GPCS.
Can be proprietary .
Can be specified by

“IP-over-802.16”
Standard or

Recommended practice

IP Classification Process

IP Header Compression (e.g.,
ROHC)

Header-Compressed IP
Datagram

LOGICAL_FLOW_ID,
PROTOCOL_TYPE=IPv4_ROHC

Generic Convergence

IP Datagram

802.16 SDU

GPCS SAP

Maps IP addresses,
TOS/DSCP field, etc.

IP Mobility , Routing, etc.

802 .16 Scheduling Service

Outside of GPCS.
Can be proprietary .
Can be specified by

“IP-over-802.16”
Standard or

Recommended practice

IP Classification Process

IP Header Compression (e.g.,
ROHC)

Header-Compressed IP
Datagram

LOGICAL_PORT_ID, COS_ID,
PROTOCOL_TYPE=IPv4_ROHC

Generic Convergence

Figure 5: IPv4-ROHC over GPCS
Figure 5 illustrates an example local 802.16 “stack” transmit process.
An IP endpoint or router typically needs to map a destination IP address to an egress link and destination MAC
address. For Ethernet, many systems have an IP route lookup process and address resolution (ARP) process.
Same for 802.16. An 802.16 BS can implement an IP route process, along with SS discovery and ARP if
necessary. Whatever the process, standards-based or proprietary, the output of route and address resolution is a
path to a network entity. This path is included in a LOGICAL_PORTFLOW_ID, which identifies a local path
from the IP entity to the egress radio for a subscriber station. Note that an implementation can employ a
separate route engine to help (even a separate, off-the-shelf, non-802.16-aware IP router subsystem), or can
combine IP packet classification (parsing and inspection) with routing.
The parsing and inspection process in a typical implementation results in more information to embody in the
13



2005-11-17 IEEE C802.16g-05/025r4
LOGICAL_FLOW_ID: class of servicea COS_ID. It may parse single-IP headers, tunneled IP-in-IP headers
(e.g., for IP mobility), and even combine network address translation functions. As with routing, standard off-
the-shelf subsystems may be employed to choose an appropriate, locally-defined
COS_IDLOGICAL_FLOW_ID.
Header compression can be performed anywhere above the GPCS SAP. In the figure, it is shown last, which
may make sense for some systems that translate headers during the packet inspection process. Robust Header
Compression (ROHC) (see IETF RFC 3095) can use GPCS. It should have its own protocol type, such as
IPv4-ROHC so a receiver can “know” to apply the ROHC algorithm. Other header compression techniques can
also be used, such as the “original” Van Jacobsen TCP/IP header compression,” RFC1144.
If MULTIPROTOCOL_ENABLE is activated, GPCS requires the transmitter to inserts its protocol type (IPv4)
as an extended subheader entry so the receiver can de-multiplex: choose the right upper protocol entity (receive
SAP).
The Generic Classifier implements a locally-defined function to map PROTOCOL_TYPE (IPv4-ROHC), LOG-
ICAL_PORT_ID, and COS_ID to an appropriate CID. For example, LOGICAL_PORT_ID could be an index
to a table in which each entry has a pointer a subscriber station’s table of available service classes. COS_ID
could be service-class index to a table of CIDs for the subscriber.

14



2005-11-17 IEEE C802.16g-05/025r4
5.2.Ethernet over GPCS

Ethernet Packet

802 .16 SDU

GPCS SAP

Maps Ethernet
addresses, and/or
802.1Q P bits, VLAN
tag

LOGICAL_FLOW_ID,
PROTOCOL_TYPE=Ethernet

802.16 Scheduling Service

Outside of GPCS.
Can be proprietary.
Can be specified by

“Ethernet -over-802.16”
Standard or

Recommended practice
Header Compression

Header-Compressed Ethernet
Packet

Ethernet Class ification
Process

Generic Convergence

Ethernet Packet

802 .16 SDU

GPCS SAP

Maps Ethernet
addresses, and/or
802.1Q P bits, VLAN
tag

LOGICAL_PORT_ID, COS_ID,
PROTOCOL_TYPE=Ethernet

802.16 Scheduling Service

Outside of GPCS.
Can be proprietary.
Can be specified by

“Ethernet -over-802.16”
Standard or

Recommended practice
Header Compression

Header-Compressed Ethernet
Packet

Ethernet Classification
Process

Generic Convergence

Figure 6: Ethernet over GPCS

5.3.802.1D,Q Bridging over GPCS
Figure 7 is copied from IEEE 802.1Q-2003, which shows 802.16 participating in an 802.1 bridged-LAN
environment. The authors of this contribution contend that the 802.16 MAC should support 802.1 bridging in a
“generic” way. By generic, we mean 802.16 should not require a system to emulate another MAC and/or frame
formats of other MACs, such as 802.3, but should offer “service” to the 802.1 bridging protocols (802.1D,
802.1Q).

15



2005-11-17 IEEE C802.16g-05/025r4

Figure 7: 802.1 Bridging -- Standards Relationships
However, GPCS by itself does not specify how bridge protocols are integrated with 802.16 particularly with
respect to service flow and connection establishment and discovery. The contributors had a desire to
propose a “baby step” to simplify layering, but not a desire to solve the bridging issues. Even so, the
802.16g specification could use GPCS to further define how 802.1 bridging uses GPCS. Figure 8 shows an
example 802.1D LAN with 4 nodes. Following are some issues to solve:

1. GPCS does not specify all service access point (SAP) primitives for LAN-specific service flow or
connection establishment

2. GPCS does not recommend how a bridge uses 802.16 broadcast and multicast connections to relay
bridged packets:

a. Multicast connection discovery or establishment. The bridging entity needs to be informed of
connections. Regarding GPCS, it should only “care” about MAC address, LOGICAL_PORT_-
ID and COS_ID and LOGICAL_FLOW_ID

b. Map VLAN IDs to CIDs that participate in a corresponding 802.1Q multicast group (if multicast
is desired)

c. Map 802.1Q priority to GPCS COS_IDappropriate LOGICAL_FLOW_ID
d. 802.1 endpoint discovery. An 802.1D bridge makes its relay decisions based on 48-bit MAC

addresses (typically uses the destination MAC address). When a bridge has a packet destined for
and endpoint node (identified by destination MAC address), but does not “know” which port will
reach the endpoint, the bridge can employ broadcast or multicast or other procedures particular
to the MAC layer.

3. Define SAP primitives to expose 802.16 SS/MS MAC addresses to the bridge relay. For instance, an
802.16 MS could be an endpoint (not a bridge). The bridge function on the BS-side (or ASN) needs to
“know” the mapping of the endpoint’s MAC address to a logical link number, and therefore to a
connection. Further, a VLAN-capable bridge needs to maintain a mapping of the 802.16 MAC address
to VLAN IDs.

16



2005-11-17 IEEE C802.16g-05/025r4

802.16 GPCS

Bridge-over-802.16

802.1 D, Q Bridge

802.3
802.16 GPCS

IP-over-GPCS

UDP

RTP

802.3

IP

UDP

RTP

802.16 GPCS

Bridge-over-802.16

802.1D Bridge

802.3
802.3

IP

UDP

RTP

IP Router

SONET802.3

802.16 Air
Interface

Ethernet

SS/MSSS/MS BS/ASN

A B

C

D

A

B

C

D

Ethernet Node. MAC address A

Ethernet Node. MAC address B

802.16 Node. MAC address C

Ethernet Node. MAC address D

Figure 8: Example LAN with 4 endpoint nodes: A, B, C, D

6. Suggested Changes
In 802.16g-05/008r1, we propose the following changes (new text in blue):
1. page 3 replace line 1 to line 52 by the following text:
5. Service-Specific CS
5.2 Packet CS
[insert new subclause 5.2.8 and subsequent test below]
5.2.8 Generic Packet Convergence Sublayer (GPCS)
The Generic Packet CS (GPCS) is a upper layer protocol-independent packet convergence sublayer that
supports multiple protocols over 802.16 air interface. It is defined as follows:
o GPCS provides a generic packet convergence layer. This layer uses the MAC SAP and exposes a

SAP to GPCS applications
o GPCS does not re-define or replace other convergence sublayers. Instead, it provides a SAP that is

not protocol specific
o The basic function of the GPCS is still classification. It participates in the process to map upper

layer packets (carried in 802.16 MAC SDUs) to appropriate 802.16 connections. But wWith GPCS,
packet parsing happens “above” GPCS. The results of packet parsing are classification parameters
given to the GPCS SAP for “parameterized classification,” but upper layer packet parsing is left to
the GPCS application

o GPCS defines a set of SAP parameters as the result of upper layer packet parsing. These are passed
from upper layer to the GPCS in addition to the data packet. Each is defined in section 5.2.8.1.

o LOGICAL_PORT_ID
o COS_ID (Class of Service ID)LOGICAL_FLOW_ID
o PROTOCOL_TYPE
o GPCS provides an optional way to multiplex multiple layer protocol types (e.g., IPv4, IPv6,

Ethernet) over the same 802.16 connection. A TLV parameter, MULTIPROTOCOL_ENABLE, is
defined in the DSx messages to enable/disable this feature. . The capability of supporting this
feature is indicated in a TLV parameter of the SBCREG messages.

17



2005-11-17 IEEE C802.16g-05/025r4
o For interoperability, each upper layer protocol type needs an interface specification (e.g., IPv4 over

802.16, or Ethernet over 802.16). Such a standard specification is out of scope of the GPCS.

(b) Protocol structure with the proposed Generic
Packet Convergence Sublayer (GPCS )

802.16 PHY

IPv4
over
16

802.16 MAC

Ethernet

over
16

abc
over
16

...

IP Ethernet abc...
Upper
layers

802.16
layers

802.16 GPCS

Multiple
protocols
over 16

Z...

SAP

X Y

802.1D
Over 16

802.1D
Bridge

Figure 17c: GPCS Layering Model

5.2.8.1 GPCS Service Access Point (SAP) Parameters
The GPCS SAP parameters enable the upper layer protocols to generically pass information to the GPCS so
that the GPCS does not need to interpret upper layer protocol headers in order to mapping the upper layer data
packets into proper 802.16 MAC connections. Since the SAP parameters are explicit, the parsing portion of the
classification process is the responsibility of the upper layer. The parameters are relevant for SAP data path
primitives, GPCS_DATA.request and GPCS_DATA.indication as described in sections 5.2.8.1.2 and 5.2.8.1.3,
respectively. [Note to editor: copy specification method from Annex C to this section to describe
GPCS_DATA primitives and SAP parameters.]
There are four GPCS SAP parameters: LOGICAL_PORT_ID, COS_ID, PROTOCOL_TYPE, and
MULTI_PROTOCOL_ENABLE. Figure 17d depicts the GPCS SAP parameters model. It shows how the first
three GPCS parameters, LOGICAL_PORT_ID, COS_ID, and PROTOCOL_TYPE, can be chosen in a system.
The parameter, MULTI_PROTOCOL_ENABLE, is required for signaling whether or not the multiple protocol
packets are transmitted on the same CID.

18



2005-11-17 IEEE C802.16g-05/025r4
Upper Layer Protocol

MAC SAP

The System “knows”
the protocol typeP

a
c
k
et

P
R
O
T
O
C
O
L
_
T
Y
P
E

Destination Lookup (routing)
e.g., Source, Destination, TCP Port

Number, VLAN tag, etc.

Parser/Classifier

P
a
c
k
e
t

L
O
G
IC
A
L
_P
O
R
T
_ID

P
R
O
T
O
C
O
L
_T
Y
P
E

P
a
c
k
e
t

L
O
G
IC
A
L
_P
O
R
T
_ID

P
R
O
T
O
C
O
L
_T
Y
P
E

C
O
S
_
ID

GPCS

C
ID

802.16 Scheduling Service

S
D
U

A route and /or bridge
lookup engine. It
“found out” about
802.16 end points
after registration and
service flow
establishment

Chooses a locally-
defined port number

Can employ any form
of packet inspection
to determine class of
service

Chooses a locally-
defined class-of-
service ID

Does not parse the
packet, but operates
only on parameters

E .g., Appendix C

SF Profile , inc luding
UGS, BE, rtPS ,
nrtPS , extended rtPS

GPCS SAP

Figure 17d: GPCS SAP Parameters Model
Upper Layer Protocol

MAC SAP

P
a
c
k
e
t

De-Mux Function

P
a
c
ke
t

P
R
O
T
O
C
O
L
_
T
Y
P
E

GPCS

C
ID

802.16 MAC

S
D
U

Has a table to lookup
ULP SAP from
PROTOCOL_TYPE

Extracts
PROTOCOL_TYPE
from DSX context or
from SDU

E.g., Appendix C

GPCS SAP

Figure 9: PROTOCOL_TYPE Usage by a Receiver
PROTOCOL_TYPE. The protocol type field identifies the upper layer protocol that is immediately
above the 802.16 protocols. The PROTOCOL_TYPE is included in GPCS_DATA.request and
GPCS_DATA.indication as defined in sections 5.2.8.1.2 and 5.2.8.1.3 respectively. If

19



2005-11-17 IEEE C802.16g-05/025r4
MULTI_PROTOCOL_ENABLE is activated, the PROTOCOL_TYPE shall be also carried over-
the-air in every SDU, so the 802.16 receiver can demultiplex an SDU and invoke the appropriate
upper layer protocol. If MULTIPROTOCOL_ENABLE is not activated, an 802.16 CID connection
can carry only one protocol type, and the PROTOCOL_TYPE field shall be included in
ASF.indication primitive and DSx messages during connection establishment. is only
communicated during connection establishment through DSx messages. It is thus analogous to the
“ethertype” field in an Ethernet packet or the 16-bit PPP data link (DL) layer protocol field in PPP
packets.The PROTOCOL_TYPE values are the same as the value of the GPCS PROTOCOL_TYPE
encoding as defined in section 11.13.19.3.4.3. The GPCS can either uses the IANA to assign 2-byte
802.16 PROTOCOL_TYPE numbers, or maybe just borrow the number space from PPP. Note
that GPCS with MULTIPROTOCOL_ENABLE is just about like Ethernet Packet CS except no
Ethernet addresses are transported, and so they don’t need to be header-compressed.
LOGICAL_PORT_ID. A port number that is typically output from a bridging or routing function. It
is locally assigned and not exchanged between 802.16 air link..
COS_ID (Class of Service ID). A class of service identifier output from a packet-parsing
classification function. The class of service could simply identify an 802.16 scheduling service type.
Alternatively, a system could define it as a superset of 802.16 scheduling services, and perform local
scheduling and/or queuing based on the value. So, instead of specifying COS_ID to mean exactly
the 802.16 scheduling service type, it is left as an abstract locally-defined identifier. In either case,
the GPCS takes the COS_ID as input and uses it to determine a CID with matching 802.16
scheduling services.
LOGICAL_FLOW_ID. This parameter is a locally-assigned number, unique within a GPCS
implementation. A GPCS implementation shall map this parameter directly to a service flow.
During service flow establishment, the 802.16 control plane function shall allocate a LOGICAL_-
FLOW_ID and return it to the upper layer in the Add_Service_Flow.response as defined in section
14.5.6.4.4.2.
MULTI_PROTOCOL_ENABLE. This parameter is not shown in Figure 17d. A local system can
optionally choose to enable/disable multiple PROTOCOL_TYPEs to be carried over a single CID.
MULTI_PROTOCOL_ENABLE is useful for devices that are constrained to implement a small
number of CIDs yet need to carry a variety of protocols using the same 802.16 scheduling service
type. For instance, a single best-effort (BE) connection could carry statistically multiplexed packets
of IPv6, IPv6-ROHC and Ethernet PROTOCOL_TYPEs.
DATA. SDU data reference to a number of bytes delivered by the GPCS upper layer to GPCS, or
by GPCS to the upper layer.
LENGTH. Number of bytes in DATA.

5.2.8.1.2 GPCS_DATA.request
5.2.8.1.2.1 Function
This primitive defines the transfer of data from the upper-layer, GPCS application, to the GPCS SAP.
5.2.8.1.2.2 Semantics of the Service Primitive
The parameters of the primitive are as follows:

GPCS_DATA.request
(
PROTOCOL_TYPE,
LOGICAL_FLOW_ID,
length,
data
)

20



2005-11-17 IEEE C802.16g-05/025r4
The PROTOCOL_TYPE specifies the protocol function of the upper layer, as defined in section
11.13.19.3.4.3.

LOGICAL_FLOW_ID is a locally-assigned number, unique within a GPCS implementation. A GPCS
implementation shall map this parameter directly to a service flow. During service flow establishment,
the 802.16 control plane function shall allocate a LOGICAL_FLOW_ID and return it to the upper layer
in the Add_Service_Flow.response as defined in section 14.5.6.4.4.2. Furthermore, a LOGICAL_-
FLOW_ID is mapped to exactly one 802.16 service flow identified by an SFID.

The length parameter specifies the length of the SDU in bytes. Note if MULTIPROTOCOL_ENABLE
is active, the length does not include the PROTOCOL_TYPE which GPCS will prepend to the SDU
before sending to the MAC SAP.

The data parameter specifies the SDU as received by the GPCS SAP from the upper layer protocol.

5.2.8.1.2.3 When Generated

This primitive is generated by an upper layer protocol when a GPCS SDU is to be transferred to a peer
entity or entities.

5.2.8.1.2.4 Effect of Receipt

The receipt of this primitive causes GPCS to map the LOGICAL_FLOW_ID to a service flow and
thereby a connection. GPCS invokes MAC functions, for example the MAC SAP (an example MAC
SAP definition is provided in Annex C) to effect transfer of the SDU to the MAC layer. If MULTI-
PROTOCOL_ENABLE is activated as defined in sections 11.8.13 and 11.13.19.3.4.19, then GPCS will
insert the PROTOCOL_TYPE at byte number 0 of the SDU prior to delivering the SDU to the MAC
layer.

5.2.8.1.3 GPCS_DATA.indication
5.2.8.1.3.1 Function
This primitive defines the transfer of data from the GPCS to an upper layer protocol.
5.2.8.1.3.2 Semantics of the Service Primitive
The parameters of the primitive are as follows:

GPCS_DATA.indication
(
PROTOCOL_TYPE,
length,
data
)

The PROTOCOL_TYPE identifies the specific upper layer protocol, as defined in section 11.13.19.3.4.-
3. GPCS formulates the PROTOCOL_TYPE in one of 2 ways:
1. If MULTIPROTOCOL_ENABLE is activated as defined in sections 11.8.13 and 11.13.19.3.4.19,

then GPCS locates PROTOCOL_TYPE starting at byte number 0 in the SDU.
2. If MULTIPROTOCOL_ENABLE is not activated (the default condition), GPCS obtains

PROTOCOL_TYPE from the CID context since it was established in a DSx message when the
corresponding 802.16 service flow was established.

The length parameter specifies the length of the SDU in bytes. Note if MULTIPROTOCOL_ENABLE
is active, the length does not include the PROTOCOL_TYPE which GPCS will remove from the SDU

21



2005-11-17 IEEE C802.16g-05/025r4
before sending to the upper layer.

The data parameter specifies the SDU as received by the GPCS SAP from the MAC.

Note that the GPCS_DATA.indication does not have a LOGICAL_FLOW_ID parameter because LOG-
ICAL_FLOW_ID is not transferred over the 802.16 air interface.

5.2.8.1.3.3 When Generated

This primitive is generated by GPCS whenever a GPCS SDU is to be delivered to an upper layer
protocol resulting from receipt of a MAC SDU by GPCS.

5.2.8.1.3.4 Effect of Receipt

The effect of receipt of this primitive by the upper layer protocol entity is dependent on the validity and
content of the SDU. The choice of upper layer protocol entity is identified by PROTOCOL_TYPE.

5.2.8.2. GPCS PDU Format
There are two different formats of the GPCS PDU depending on the parameter value of MULTIPROTOCOL_-
ENABLE, as shown in Figure 17e. PROTOCOL_TYPE indicates the outermost protocol of the SDU. It is 16-
bit number assigned from a set of possible values of the PPP data link (DL) layer protocol numbers. This space
of numbers is maintained by the IANA. It shall be communicated to the MAC receiver in every SDU if
MULTIPROTOCOL_ENABLE is enabled for a CID.

GPCS SDU

(a) GPCS PDU format with MULTIPROTOCOL_ENABLE Disabled

PROTOCOL_TYPE
(1 byte)

GPCS SDU

(b) GPCS PDU format with MULTIPROTOCOL_ENABLE Enabled
Figure 17e: GPCS PDU formats Sent to the MAC SAP from the GPCS

2. Page 35, line 5645, insert new section 11.78.413:

11.7.4 8.13 Multiprotocol over GPCS Support

This basic capability parameter indicates whether or not the multiprotocol over GPCS is supported. If
multiprotocol is supported, a BS or SS may send MULTIPROTOCOL_ENABLE (section 11.13.19.3.4.19) in a
DSx message.

Type Length Value Scope

4529 1 Bit#0:
0=multiprotocol not supported (default)
1=supported
Bit#1 to Bit#7: reserved

SBCREG-
REQ,
SBCREG-REP

22



2005-11-17 IEEE C802.16g-05/025r4
3. page 5, line 49, replace from page 5 line 40 to page 8 line37 by the following text:

11.13.19 CS specific service flow encodings

11.13.19.1 CS specification

Type Length Value Scope
[145/146].28 1 0: No CS 0: GPCS (Generic Packet Convergence Sublayer)

1: Packet, IPv4
2: Packet, IPv6
3: Packet, 802.3/Ethernet
4: Packet, 802.1Q VLAN
5: Packet, IPv4 over 802.3/Ethernet
6: Packet, IPv6 over 802.3/Ethernet
7: Packet, IPv4 over 802.1Q VLAN
8: Packet, IPv6 over 802.1Q VLAN
9: ATM
10: Packet, 802.3/etherneta with ROHC header compression
11: Packet, 802.3/ethernetb with ECRTP header compression
12: Packet, IP2 with ROHC header compression
13: Packet, IP2 with ECRTP header compression
10 14~255: reserved

DSx-REQ

11.13.19.2 CS Parameter encoding rules

CST CS
98 No CS GPCS (Generic Packet Convergence Sublayer)
99 ATM
100 Packet, IPv4
101 Packet, IPv6
102 Packet, 802.3/Ethernet
103 Packet, 802.1Q VLAN
104 Packet, IPv4 over 802.3/Ethernet
105 Packet, IPv6 over 802.3/Ethernet
106 Packet, IPv4 over 802.1Q VLAN
107 Packet, IPv6 over 802.1Q VLAN
108 Packet, IP with header compression (ROHC)
109 Packet, IP with header compression (ECRTP)
110 Packet, IP over 802.3/Ethernet with header compression (ROHC)
111 Packet, IP over 802.3/Ethernet with header compression (ECRTP)

11.13.19.3.4.3 GPCS PROTOCOL_TYPE Encoding
The encoding of the value field is that defined in an Internet Assigned Numbers Authority (IANA) registry.

23



2005-11-17 IEEE C802.16g-05/025r4
<TBD: insert reference to registry here>. The protocol type is defined as one byte.

Type Length Value Scope
[145/146].cst.3.21 1 One byte 802.16 protocol

number
DSx-REQ,
DSx-REP

For a connection using Generic Packet CS, this TLV shall be used to indicate the protocol carried over the
connection when the MULTIPROTOCOL_ENABLE is disabled. For other packet CS types, PROTOCOL_-
TYPE is not used.
11.13.19.3.4.19 MULTIPROTOCOL_ENABLE Encoding
This parameter is used to indicate whether or not multiple upper layer protocol data packets are allowed to be
transported over the same connection when the Generic Packet Convergence sublayer (GPCS) is used. This
parameter only applies to GPCS.
If enabled, the connection can carry multiple upper layer protocols and the PROTOCOL_TYPE field must be
prepended to each upper layer data packets for the corresponding CID. See section 5.2.8.2 for the GPCS PDU
format. If disabled, a connection must establish the single PROTOCOL_TYPE in use by exchanging the
PROTOCOL_TYPE TLV in the DSx messages as specified in section 11.13.19.3.4.3.

Type Length Value Scope
[1445/146].cst.3.20 1 0: MULTIPROTOCOL_-

ENABLE is disabled, default
value.
1: MULTIPROTOCOL_-
ENABLE is enabled, SDU is
prepended with
PROTOCOL_TYPE value
described in section
11.13.19.3.4.3
2-255: Reserved for future use

DSx-REQ, DSx-REP

24


