Project	IEEE 802.16 Broadband Wireless Access Working Group < <u>http://ieee802.org/16</u> >						
Title	A scheme for the absolute identification and numbering of Coexistence Control Channel Slots						
Date Submitted	2006-09-28						
Source(s)	John Sydor	Voice: 613-998-2388 Fax: 613-990-8369					
	Shanzeng Guo Communications Research Centre Ottawa, Canada K2H 8S2	john.sydor@crc.ca					
Re:	Revision to IEEE C802.16h-06/091						
Abstract	A scheme for numbering and identification of purpose to Coexistence Control Channel slots						
Purpose	Revision to original contribution to include more functions, give more detail						
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.						
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.						
Patent Policy and Procedures	The contributor is familiar with the IEEE 802. < <u>http://ieee802.org/16/ipr/patents/policy.html</u> use of patent(s), including patent applications, applicant with respect to patents essential for of standard." Early disclosure to the Working Gro essential to reduce the possibility for delays in publication will be approved for publication. If possible, in written or electronic form, if pater incorporated into a draft standard being develo						

A scheme for the absolute identification and numbering of Coexistence

Control Channel Slots

John Sydor

Shanzeng Guo

Communications Research Centre

Ottawa Canada.

Introduction

A scheme is required that will identify the intervals of time in which the Coexistence Control Channel (CX_CC) slots are available. The position of these slots needs to be universally known to all WirelessMAN-CX systems in order to coordinate noise and interference measurements, identify non-Wireless MAN_CX users, and to send specific signaling required for the resolution of inter-system co-channel interference. The scheme described below is proposed.

The Coexistence Control Channel (CX_CC) is composed of time slots of approximately 1.9 milliseconds duration (Tcc-s) that have a repetitive cycle of 10 seconds (T_cxcc). There are 50 slots in every repetitive cycle. Each slot occurs every 200 ms (Tcc). The start of this period is 0030:000 in Absolute Time, thus there are 8640 T-cxcc cycles per 24 hour day. The positions of the uplink and downlink slots inside the frame is detailed in Section 10.5.2.

The CX_CC time slots are designed to appear within the Common sub-frame and within the Master sub-frame within the specific IEEE 802.16d-2004 MAC frame. The numbering of MAC frame is defined in Section 6.4.1.3 is given by the CX_MAC_NO. The number for the same CX_CC slot changes depending on the MAC frame duration; however the position of a the specific slot in absolute time is independent of the MAC frame numbering. Thus, the same CX_CC slot occurs at exactly the same time, regardless if a 5, 10, or 20 msec frame duration is chosen.

GPS Timing Distribution to other Non-WirelessMAN-CX systems

GPS timing control slots occur every second. They consist of a total of 10 slots within the T_cxcc superframe; 5 for downlink signaling of GPS timing and 5 for uplink signaling of GPS timing. These timing pulses will consist of 800 usec (T_gpsbrst) OFDM/OFDMA (TBD) constituted energy pulses that are designed to be detectable by non-WirelessMAN-CX (other) systems with which WirelessMAN-CX systems may be required to operate with on a co-channel basis. Since these other systems may operate on bandwidths differing from the bandwidths of the OFDM/OFDMA WirelessMAN-CX systems, it is expected that detection threshold differences will be present. To counter this, the form of the TBD OFDM/OFDMA energy pulses will be such that a universally known decoding system (used by the other systems) will allow extraction of the GPS timing. In this manner, other systems co-channel and proximate to WirelessMAN-CX systems will be able to have a dependable timing reference that can be used to coordinate inter-system co-channel coexistence by using TBD coexistence protocols. In particular, this system is conceived to be used in bands such as the US 3650-3700 GHz band which may see both indoor and outdoor systems complying to the IEEE 802.16h and IEEE 802.11y Standards, which are currently in their formative stages. The timing distribution by WirelessMAN-CX systems is an altruistic support mechanism specifically designed for non-wirelessMAN-CX systems to use, thus precluding them for the requirement to have GPS or other timing receivers.

Quiet (No+Io) Periods for the Detection of Other Systems

The selection of operational channels by WirelessMAN-CX systems necessitates the identification of unoccupied channels or at least channels having (No+Io) Noise floors below some prescribed level. This process is often known as 'white-space' identification

and refers to the identification of bandwidth that can be used with minimum interference to other systems. The FCC in the US and Industry Canada have alluded to the necessity of advanced License-Exempt wireless systems to have such a capability.

Additionally there is the requirement to detect the presence of priority users (such as Radars in the 5 GHz LE allocations) and other systems (such as IEEE 802.11y; IEEE802.11a/b/g). Ideally such detection and measurement must un-corrupted by at least WirelessMAN-CX transmissions.

To do this it is proposed that WirelessMAN-CX systems, universally synchronized with a timing system (such as GPS) have specific instances in their operating cycles during which uncorrupted interference measurements can be undertaken. To achieve this during the T_cxcc superframe there will be 10 measurement instances inside the CX_CC control slots, each of duration 1 msec (T_nmeas) during which all WirelessMAN-CX systems will cease transmitting and only undertake reception. T_nmeas will begin 100 usec (TBD) after the completion of the GPS burst (T_gpsbrst) used for the distribution of timing.

CMI Organization

For same-PHY systems using the Coexistence Message Interval signaling (using BSD and SSURF messaging); provision has been made to accommodate 6 co-channel systems.

Each system (n) has 3 downlink CMI (CX_CMI_Dn) slots and 3 uplink slots (CX_CMI_Un) per repetitive cycle in which to schedule and transmit BSD and SSURF messages. Initially only CMI intervals 1-3 will be used, with 3 intervals (4-6) reserved for future applications. During each T_cxcc superframe there will be a total of 6 downlink 6 uplink CMI slots.

CMI messages are sent in either the common portions of the uplink or downlink frames in accordance to the timing specified in Section 10.5.2.

CSI Organization

WirelessMAN-CX systems using CSI energy signaling for multiple-PHY coexistence will have one cycle of CSIN allocations per T_cxcc superframe. The CX_MAC_NO will identify the MAC frame in which the CSI exists, which will be in the RTG/TTG gap between the MAC downlink and uplink frames. The CSI interval itself will be of a TBD length, but will contain CSI energy keyed symbols as detailed in Section 15.3.1.1.3 . A total of 16 CSI slots are assigned per T_cxcc.

AT1-4

AT1-4 are special slots having durations of 20 msec for use in Ad-Hoc signaling amongst WirelessMAN-CX systems not having normal IP backhaul. See Section 15.4.3.2

Insert the following new section as 10.5.3 (after Control Channel)

10.5.3 Coexistence Control Channel Function and Frame Numbering Scheme

Function	Control Channel	CX_MAC_NO containing Control			
Of Control Channel	Function Name &	Channel for given Frame Duration		Duration	
	Chapter	_			
		5 ms	10 ms	20	Starting
				ms	Time WRT
					Absolute
					Reference
					(msec)
GPS DL & (No+Io)	Other System and Noise	1	1	1	0
CSIN_0_ICSI	15.3.1.1.1	41	21	11	200
CX_CMI_D1	15.3.2.1	81	41	21	400

CSIN 1 OCSI		121	61	31	600
CX CMI U1		161	81	41	800
GPS UL & (No+Io)		201	101	51	1000
AT1	15.4.3.2	241	121	61	1200
CSIN 2 OCSI		281	141	71	1400
CX CMI D2		321	161	81	1600
CSIN 3 OCSI		361	181	91	1800
GPS DL & (No+Io)		401	201	101	2000
CX CMI U2		441	221	111	2200
AT2		481	241	121	2400
CSIN 4 ICSI		521	261	131	2600
CX CMI D3		561	281	141	2800
GPS UL & (No+Io)		601	301	151	3000
CSIN 5 ICSI		641	321	161	3200
CX CMI U3		681	341	171	3400
AT3		721	361	181	3600
CSIN 6 OCSI		761	381	191	3800
GPS DL & (No+Io)		801	401	201	4000
CX CMI D4	Reserved	841	421	211	4200
CSIN 7 OCSI		881	441	221	4400
CX CMI U4	Reserved	921	461	231	4600
AT4		961	481	241	4800
GPS UL & (No+Io)		1001	501	251	5000
CSIN 8 ICSI		1041	521	261	5200
CX CMI D5	Reserved	1081	541	271	5400
CSIN 9 OCSI		1121	561	281	5600
CX CMI U5	Reserved	1161	581	291	5800
GPS DL & (No+Io)		1201	601	301	6000
CSIN 10 OCSI		1241	621	311	6200
CX CMI D6	Reserved	1281	641	321	6400
CSIN 11 OCSI		1321	661	331	6600
CX CMI U6	Reserved	1361	681	341	6800
GPS UL & (No+Io)		1401	701	351	7000
CSIN_12_ICSI		1441	721	361	7200
Spare		1481	741	371	7400
CSIN 13 OCSI		1521	761	381	7600
Spare		1561	781	391	7800
GPS DL & (No+Io)		1601	801	401	8000
CSIN_14_OCSI		1641	821	411	8200
Spare		1681	841	421	8400
CSIN_15_OCSI		1721	861	431	8600
Spare		1761	881	441	8800
GPS UL & (No+Io)		1801	901	451	9000
Spare		1841	921	461	9200
Spare		1881	941	471	9400
Spare		1921	961	481	9600
Spare		1961	981	491	9800

Note 1: Control Channel duration Tcc_s is ~1.9 msec

Note 2: CMI 4-6 are considered reserved for future applications.

Note 3: CX_MAC_NO =1 begins at absolute time 0030:000 sec and repeats every T_cogn.

Note 4: T_cogn =12 seconds, with MAX { CX_MAC_NO} equaling respectively 2400, 1200 and 600 for Frame durations of 5,10, and 20 msec.

Note 5: GPS & (No+Io) consists of a 800 usec TBD energy pulse and a 1msec quiet period.

2006-09-28