Project	IEEE 802.16 Broadband Wireless Access Working Group <http: 16="" ieee802.org=""></http:>			
Title	R-FCH for Relay Zone			
Date	2007-04-16			
Submitted				
Source(s)	Kanchei (Ken) Loa, Yi-Hsueh Tsai, Voice: +886-2-2739-9616			
	Yung-Ting Lee, Hua-Chiang Yin, loa@iii.org.tw			
	Shiann-Tsong Sheu, Youn-Tai Lee,			
	Frank C.D. Tsai, Chih-Chiang Hsieh,			
	Heng-Iang Hsu			
	Institute for Information Industry			
	8F., No. 218, Sec. 2, Dunhua S. Rd.,			
	Taipei City, Taiwan.			
	[add co-authors here]			
Re:	IEEE 802.16j-07/013: "Call for Technical Comments Regarding IEEE Project 802.16j"			
Abstract	This contribution provides R-FCH			
Purpose	Text proposal for 802.16j Baseline Document			
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion			
	and is not binding on the contributing individual(s) or organization(s). The material in this			
	document is subject to change in form and content after further study. The contributor(s)			
	reserve(s) the right to add, amend or withdraw material contained herein.			
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained			
	in this contribution, and any modifications thereof, in the creation of an IEEE Standards			
	publication; to copyright in the IEEE's name any IEEE Standards publication even though it			
	may include portions of this contribution; and at the IEEE's sole discretion to permit others to			
	reproduce in whole or in part the resulting IEEE Standards publication. The contributor also			
	acknowledges and accepts that this contribution may be made public by IEEE 802.16.			
Patent	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures			
Policy and	http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may			
Procedures	include the known use of patent(s), including patent applications, provided the IEEE receives			
	assurance from the patent holder or applicant with respect to patents essential for compliance			
	with both mandatory and optional portions of the standard." Early disclosure to the Working			
	Group of patent information that might be relevant to the standard is essential to reduce the			
	possibility for delays in the development process and increase the likelihood that the draft			
	publication will be approved for publication. Please notify the Chair			
	<mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented</mailto:chair@wirelessman.org>			
	technology (or technology under patent application) might be incorporated into a draft standard			
	being developed within the IEEE 802.16 Working Group. The Chair will disclose this			
	notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices >.			

R-FCH for Relay Zone

Introduction

In IEEE 802.16j-026r3, there are three issues in section 8.4.4.7.3 R-FCH channel:

- (1) The subchannel allocation of R-FCH in RS_Zone with FUSC or AMC permutation is not defined
- (2) FEC Code type and modulation type is not flexible enough, DIUC is used instead.
- (3) RS-Zone prefix format for 128 FFT is not defined whose length is only 12 bits.

Remedy

If RS_Zone is FUSC or AMC permutation, the R-FCH shall be allocated as follows. For FFT sizes other than 128, the first 4 slots in the downlink part of subchannel contain the R-FCH. These slots contain 48 bits modulated by QPSK with coding rate 1/2 and repetition coding of 4. For FFT-128, the first slot in the downlink part of the subchannel is dedicated to R-FCH and repetition is not applied. Figure 3d depicts this structure.

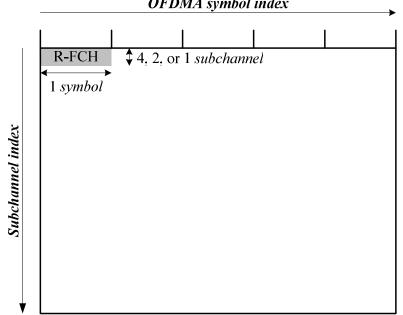


Figure 3c R-FCH subchannel allocation for FUSC or AMC zone
OFDMA symbol index

The R-FCH shall be transmitted using QPSK rate 1/2 with four repetitions using the mandatory coding scheme (i.e., the R-FCH information will be sent on four subchannels with successive logical subchannel numbers). For FFT sizes other than 128, <u>the 24-bit DL Frame Prefix shall be duplicated to form a 48-bit block</u>, which is the minimal FEC block size. For the case of 128 FFT, the following compressed format shall be used for R-FCH. Before being mapped to the R-FCH, <u>the 12-bit DL Frame Prefix shall be repeated four times to</u> <u>form a 48-bit block</u>, which is the minimal FEC block size.

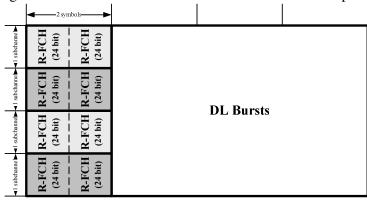
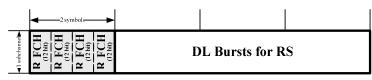



Figure 3a OFDMA FCH allocation for all FFT sizes except 128

Figure 3b OFDMA FCH allocation for 128 FFT

Text Proposal

8.4.4.7.2 Frame structure for non-transparent mode

8.4.4.7.2.1 MR-BS frame structure

The <u>first non-AAS</u> DL Relay_Zone shall include a R-FCH and a R-MAP. In the DL Relay_Zone, the subchannel allocation may be the same as that in the DL Access_Zone. The R-FCH may be the same as the FCH in the DL Access_Zone. Other attributes of the MR-BS frame and the RS frame such as transition between modulation and coding presence of multiple zones, may be the same as those described in 8.4.4.2.

8.4.4.7.2.2 Relay frame structure

The R-FCH and the R-DL-MAP shall be transmitted in the first non-AAS DL Relay zone that is in Tx mode

8.4.4.7.3 R-FCH channel

If a DL RS_Zone contains a R-FCH channel, the R-FCH channel shall be transmitted as FCH described in 8.4.4.2. The R-FCH contains the RS-Zone Prefix as described in 8.4.4.7.4. In case that RS_Zone is PUSC permutation, the subchannel of R-FCH shall be allocated as FCH described in 8.4.4.4. In case that RS_Zone is FUSC or AMC permutation, the first 4 slots in the downlink part of subchannel contain the R-FCH for FFT sizes other than 128. The first slot in the downlink part of the subchannel is dedicated to R-FCH for FFT-128.

8.4.4.7.4 RS-Zone prefix

The RS-Zone prefix is a data structure transmitted on R-FCH of a DL RS_Zone. The RS-Zone prefix includes information regarding the location of the first RS_Zone in the next frame and the information required for decoding R-MAP. Table XXX defines the format of RS_Zone prefix.

Syntax	Size(bits)	Notes
RS_Zone_Prefix_format () {		
RS_Zone location	<u>8</u> 7	The field indicates the OFDM symbol index reference to the beginning of next frame in unit of 2-OFDM symbols
If(RS Zone is PUSC zone) {		
Used_subchannel_bitmap	6	Bit #0: Subchannel group 0 Bit #1: Subchannel group 1 Bit #2: Subchannel group 2 Bit #3: Subchannel group 3 Bit #4: Subchannel group 4 Bit #5: Subchannel group 5
<u>} else {</u>		
reserved	<u>6</u>	Shall be zero
<u>}</u>		
DIUC for R-MAP	4	0–12: Different burst profiles for R-MAP 13–15: Reserved
R-MAP length	<u>6</u> 5	Length in unit of slot
FEC Code type and modulation type	5	$\frac{0b0000 = QPSK (CTC) 1/2}{0b0001 = QPSK (CTC) 3/4}$ $\frac{0b0010 = 16 QAM (CTC) 1/2}{0b0011 = 16 QAM (CTC) 3/4}$ $\frac{0b0100 = 64 QAM (CTC) 1/2}{0b0101 = 64 QAM (CTC) 2/3}$ $\frac{0b0111 = 64 QAM (CTC) 3/4}{0b1000 = 64 QAM (CTC) 5/6}$ $\frac{0b1001 0b1111 reserved}{0b1001 0b1111 reserved}$
Repetition_Coding_Indication	4	0: No repetition coding on R-MAP 1: Repetition coding of 2 used on R-MAP
}		T. Repetition coding of 2 used on K WIAP

Table xxx-a: RS-Zoi	e prefix format for all FFT sizes	s except 128

[Note: DIUC = 0 shall have burst profile parameters that are the same as those used for transmission of the DL-MAP message.]

Syntax	Size(bits)	Notes
RS Zone Prefix format () {		
Used subchannel indicator	1	0: Subchannel 0 is used for segment 0, Subchannel 1 is used for segment 1, Subchannel 2 is used for segment 2, 1: Use all subchannels
DIUC for R-MAP	<u>4</u>	0–12: Different burst profiles for R-MAP 13-15: Reserved
R-MAP length	<u>5</u>	Length in unit of slot
reserved	2	Shall be zero
1		

Table xxx-b: RS-Zone prefix format for 128 FFT

[Note: DIUC = 0 shall have burst profile parameters that are the same as those used for transmission of the DL-MAP message.]

RS_Zone location

An indicator regarding the location of RS_Zone in the next frame. The first OFDM symbol in each frame is indexed as 0. The RS_Zone location indicates the OFDM symbol index relative to the first OFDM symbol in next frame. The unit is 2-OFDM symbols.

RS_Zone location

An indicator regarding the permutation of RS_Zone in the next frame.

R-MAP length

The length in sub-channels of R-MAP message that immediately follows the RS_Zone prefix.

FEC Code type and modulation type

An indicator indicating the modulation and code rate used for R MAP message.