Document Number: IEEE 802.16.3c-00/15 Title: TG3 Functional Requirements vs. TG1 Air Interface draft standard - MAC Date Submitted: 31August 2000 Source: Marianna Goldhammer Director-Product Management

BreezeCOM	Voice:	+972-3-6456241
Atidim Building 1	Fax:	+972-3-6456290
Tel Aviv, Israel	E-mail:	mariannag@breezecom.co.il

Venue:

802.16 Session #9, September 11-15, 2000, Denver, Colorado, USA

Base Document:

Purpose:

Outline the differences between the TG3 functional requirements and the TG1 proposed MAC

Notice:

This document has been prepared to assist the IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:

The contributor acknowledges and accepts that this contribution may be made public by 802.16. IEEE Patent Policy:

The contributor is familiar with the IEEE Patent Policy, which is set forth in the IEEE-SA Standards Board Bylaws <<u>http://standards.ieee.org/guides/bylaws</u>> and includes the statement: "IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard."

Comparison between TG3 FRD and TG1 proposed MAC

Marianna Goldhammer BreezeCOM

Contents

- Essential FRD differences
- Expected difference in behavior
- TG1 MAC disadvantages from TG3 perspective

TG1, TG3 FRD

- TG1: Document IEEE 802.16.s-99/00r1
- TG3: Document IEEE 802.16.3-00/02r3
- "MAY" requirements not discussed here

Essential FRD differences - 1

	TG1	TG3
Market	Business	Residential
	Multi-dwell	ЅоНо
		Small business
		Multi-tenant
Services	Legacy telephony	IP
	Audio/Video Multicast	Bridged LAN
	ATM	Packet based voice
	IP	
Peak data rate	155Mb/s	10Mb/s*
Minimum delay	5ms	>>

Essential FRD differences - 2

	TG1	TG3
Classes of Services	ATM classification: CBR (SDH/PDH) VBR (VoIP, video) ABR(variable BW) UBR(best effort)	IETF DiffServ classification: EF(VoIP,video) AF(ISP service differentiation) BES(best effort)
Typical channel width	25MHz*	3-3.5MHz
Cell max. radius	3km*	50km
ARQ	N.A.	YES

* - resulting from other considerations

Expected differences in the behavior of the TG1 and TG3 systems – 1

Why	TG1	TG3
Residential vs. business	Large traffic pipes, always caring data, pseudo-static character	Mostly random pipes
Legacy vs. IP	Low delay is required (1ms frames)	Delay less critic
Bridged LAN	-	Requires 802.1d addressing for bridge support
High vs. low data rate	Low transmission time per packet	Long transmission time, more than 1ms for long IP packets

Expected differences in the behavior of the TG1 and TG3 systems - 2

Why	TG1	TG3
Short vs. long distance	Short contention period	Long contention period
Variable length IP datagrams support	Segmentation may be used	It is recognized that segmentation is spectral inefficient and should be avoided
ARQ	No support Hard to introduce due to the "policy rules"	Required
ATM vs. IP QoS classification	Hard, 1ms, framing TG1"policy rules"	Flexible framing, longer intervals TG3 "policy rules"

TG1 MAC DISADVANTAGES (from TG3 perspective)

TG1 MAC is PHY dependent

- The MAC is adapted for the QAM modulation
 - Mini-slot is defined in number of QAM symbols
 - The header is transmitted in QAM 4
 - The equalizer parameters are for QAM, line-ofsight operation
 - Adaptive modulation support is defined for QAM

1 ms frame duration

- Too short for IP variable packet length support
 1.7ms for 3.5MHz, 2bit/s/Hz, 1500bytes frame
- Too short for TDD support

– Both Rx and Tx in 1ms!

- Too short to accommodate the contention period, with 50km distance
- Too short tom accommodate delay for 50km (150us)
 - causes registration slots to waste a lot of BW; these are often used with residential deployment

No flexible framing

- Framing is problematic with IP traffic
 - Long frames = long delay
 - QoS problems
 - TCP/IP throughput problems
 - Short frames = short delays
 - Require fragmentation
 - Spectral efficiency problems

No fast BW allocation

- Many CPE units with random data demand require fast BW allocation, as opposed to small number of users using legacy services
- Slow (pseudo-static) and centralized BW allocation mechanism: request, allocation, very demanding BST central processor performance

No Acknowledge frames

- Contrary to FRD-TG3
- ARQ require fast variable BW allocation, which is against the TG1 "policy rules" philosophy

No retransmission support

- Rx/Tx policy per service limitation
- The BW allocation is quasi static, except the Best Effort Service
- The "policy rules" can accommodate retransmissions only for BES

VoIP VAD support

- BW requirements are permitted only in contention periods may be unsuccessful

 Against QoS concepts!
- Not suitable for relatively long compression intervals, demanding fast BW allocation for efficient support

Multicast and LAN-to-LAN bridging support

- Addressing mode: based on connection_ID of the final destination, not on the MAC address
- No mechanism to allocate a LAN address to a connection_ID
- Makes the bridge implementation non-standard and difficult
- Introduces significantly delays in bridge
- Lowers IP performance

No data polling mechanism

- Data polling needs no apriori knowledge of BW requirements
- Most suitable when combined with IP traffic shaping
- Most suitable for VoIP when VAD is enabled
- Most suitable for external VoIP GW
- Most suitable to support ARQ

Conclusions

- 802.16.1 MAC does not respond to 802.16.3 needs
- 802.16 should decide between two possible approaches:
 - Adopt the existing MAC proposal as 802.16.1
 MAC and design a different MAC for 802.16.3
 - Change the existing MAC proposal to be:
 - PHY independent
 - Suitable to both 802.16.1 and 803.16.3