Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16					
Title	PHY proposal for IEEE 802.16.3					
Date Submitted	2000-10-30					
Source(s)	Authors: C. Grimault, O.Seller.	Ker Lann, Bat Alliance. 35170 Bruz. FRANCE. Voice: +33 2 99571656				
	SACET	Fax: +33 2 99571617 mailto:olivier.seller@sacet.com				
Re:	Response to 802.16.3 Invitation to submit contributions representing proposed PHY Solutions.					
Abstract	This proposed PHY addresses some criteriae in the Evaluation Table of the Call for proposals document IEEE802.16.3-00/14 with a flexible and scalable modulation/coding scheme that is spectrally highly efficient at low SNR.					
Purpose	To be considered by 802.16.3 Task Group as part of the 2-11 GHz Licensed bands' FWA PHY Solution.					
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.					
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16					
Patent Policy and Procedures	The contributor is familiar with the IE <http: 16="" ieee802.org="" ipr="" patents="" polic<br="">include the known use of patent(s), inc in the opinion of the standards-develop from the patent holder that it will licen purpose of implementing the standard.</http:>	EE 802.16 Patent Policy and Procedures (Version 1.0) cy.html>, including the statement "IEEE standards may cluding patent applications, if there is technical justification bing committee and provided the IEEE receives assurance se applicants under reasonable terms and conditions for the				
	Early disclosure to the Working Group standard is essential to reduce the poss the likelihood that the draft publication <mailto:r.b.marks@ieee.org> as early (granted or under application) that may been approved by IEEE 802.16. The C site <http: 16="" <="" ieee802.org="" ipr="" patents="" td=""><td>o of patent information that might be relevant to the ibility for delays in the development process and increase a will be approved for publication. Please notify the Chair as possible, in written or electronic form, of any patents of cover technology that is under consideration by or has thair will disclose this notification via the IEEE 802.16 web notices>.</td></http:></mailto:r.b.marks@ieee.org>	o of patent information that might be relevant to the ibility for delays in the development process and increase a will be approved for publication. Please notify the Chair as possible, in written or electronic form, of any patents of cover technology that is under consideration by or has thair will disclose this notification via the IEEE 802.16 web notices>.				

PHY Proposal for IEEE

Introduction

This document gives outline of the proposed PHY layer for 802.16.3 Broadband Fixed Wireless Access sytems. OFDM modulation is prefered to single carrier modulation in order to propose simple, efficient and low cost equalization schemes. Multiple access is TDMA with TDD. A new constellation / coding scheme is proposed to achieve high spectral efficiency at low SNR, and thus increase coverage area and/or reduce transmitted power.

Key features of the PHY Proposal

The main features of this PHY proposal are :

OFDM scheme with PSAM,

TDMA, interleaved TDM multiple access,

Turbo-BICM.

OFDM parameters

Channel assumptions: channel modeling is not the purpose of this proposal, but some elements are needed to show OFDM interest. Non Line-Of-Sight (NLOS) delay spread is estimated at 2 μ s, as in HiperLAN2 outdoor channel models. Mobile scatterers generate a Doppler spread that is limited to $f_d = 500$ Hz, and the channel is considered as slowly varying.

The minimum bandwidth for FWA systems is 3.5 Mhz. Thus delay spread is about 6 samples and direct equalisation is complex. OFDM is therefore a good candidate for FWA, since equalisation is easy through channel estimation. Modulation uses Pilot Symbols (PSAM) and Cyclic Prefix (CP) to achieve channel estimation, equalization and synchronization.

Low Inter Carrier Interference (ICI) requires that sub-carrier spacing (equals size) should be greater or equal to $100 \text{ f}_{d} = 50 \text{ KHz}$, where f_{d} is the maximum doppler frequency of the moving scatterers.

Suited OFDM wave forms:

Bandwith	Sub-carriers number	Cyclic prefix size	PSAM pattern	Spectral Efficiency
MHz		in samples	(freq spacing , time spacing)	
3,5	≤ 64	≈ 10	(4, 16)	0,85 . Rc . log(M)
7	≤ 128	≈ 16	(4, 16)	0,875 . Rc . log(M)

Where Rc is the coding rate and M is the constellation size.

The (4, 16) PSAM pattern means that pilots are spaced by 4 sub-carriers in the current OFDM symbol, and these pilots symbols are not present at each OFDM symbol, but only every 16 OFDM symbols. This low density PSAM matches the slow fading channel and increases spectral efficiency.

Space Time Block Codes

STBC are used to increase diversity with $R_{st} < 1$, or to increase throughput with $R_{st} > 1$. OFDM and STBC have

a mutual gain:

©STBC reduces power on each antenna, thus cheaper and more linear amplifiers can be used.

- **©**OFDM can shift Space-Time codes to Space-Frequency codes (within coherence Bandwidth B_c), a slow
- frequency varying channel is equivalent to a slow time varying channel. This reduces delay.
- **©**OFDM permits the use of "interspaced PSAM": channel estimation is simultaneous for all antennas, using sub-carriers orthogonality (figure 1).

Figure 1: Interspaced PSAM for STBC simultaneous channel estimation. WaveForm1 and WaveForm2 are displayed in the classical [time \times freq] representation of OFDM. Blank means that no power is transmitted at a given position.

Turbo BICM

TurboBICM is a new coding scheme which combines Iterative Decoding (Turbo) and Bit Interleaved Coded Modulation (BICM). It is highly efficient at low SNR, since it is working at the constellation level, like Treillis Coded Modulations (TCM). Efficient coding rate is in the range from $\frac{1}{2}$ to $\frac{2}{3}$.

Complexity is lower than turbo-codes: one turbo iteration in Turbo BICM is only one decoding instead of 2 with usual turbo codes. Component codes are short, thus decoding has reasonable complexity.

Scalability is mostly achieved with constellation choice: 4QAM, 8PSK, 16QAM, 32QAM and 64QAM. Thus channel coding can then be the same for all constellations.

Figures 2 and 3 show Turbo BICM simulated performances on Gaussian and Rayleigh channels, with a RS(15,8) code over $GF(2^4)$. 5 iterations are performed. This is a maximum number: in most cases fewer iterations are performed.

Turbo BICM performances

Figure 2: Turbo BICM performances on Gaussian channel

Constellation	Spectral Efficiency	Req C/N for	Req C/N for	Interleaver size		Complexity
	Bits / s / Hz	$BER = 10^{-4}$	$BER = 10^{-6}$	Minimum	Nominal	
QPSK	1,1	2,8 dB	4,0 dB	4000 bits	5300 bits	5 T_d (1+ ϵ)
8PSK	1,6	5,8 dB	7,0 dB	4000 bits	8000 bits	5 T_d (1+ ϵ)
16QAM	2,1	8,0 dB	9,2 dB	4000 bits	10700 bits	5 T_d (1+1/8)
32QAM	2,7	10,1 dB	11,0 dB	4000 bits	13300 bits	$5 T_d (1+1/4)$
64QAM	3,2	12,4 dB	12,6 dB	4000 bits	16000 bits	5 T_d (1+1/2)

Where T_d is the time to compute a single SISO decoding of RS(15,8) over GF(16). Deinterleaving complexity is negligible, but it needs memory.

Figure 3: Turbo BICM performances on Rayleigh channel with perfect channel state information

Simulations show that Turbo BICM residual errors have a bursty nature, thus frame error rate is low (for a given BER). As a consequence, ARQ is very well suited to this scheme, this task is left to the MAC layer.

Interleaver size is quite critical for Turbo BICM performances, this might be a problem for low data rates connexions and small packets (fortunately most IP datagrams are big enough to fit one full interleaver). For low data rate connexions, long interleaving results in long delay. For small packets, interleaving is not possible and BER raises.

The same problem is encountered for all efficient coding schemes: spectral efficiency at low SNR requires long codes or long interleavers. For example the NASA turbo code uses a 65536 bits interleaver. Shannon's capacity proof shows that the BER can reach zero when code size increases to infinity. "Interleaved TDM" is the proposed solution to this problem.

Interleaved TDM

Small packets are interleaved together, inside one PHY frame. This is only possible on the Downlink. Packets interleaved together must share the same constellation. This schemes keeps high spectral efficiency and good QoS even with small packets.

The decoding algorithm remains the same.

The modification of the TDM access is small and quasi straightforward for MAC layer. The slot number fields is interpreted in a slightly different manner: time slot $i \rightarrow bit$ slot i or interleaved slot i. This modification can also be part of the PHY layer only.