
2001-03-06 IEEE 802.16.3c-01/34

 0

Project IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

Title C-Program for 2IRP Streaming Video Model

Date
Submitted

2000-03-05

Source(s) Tingjun Wen, Nalin Molligoda and
Jun Huang, Dept. of S.C.E.
Carleton University Ottawa
ON K1S 5B6 Canada

Voice: 613 271 6889
Fax: 613 599 4225
mailto: nmolligo@opentext.com

Re: This is an informational contribution for promoting IEEE802.16.3 traffic ad-hoc models,
specifically 2IRP part.

Abstract In this contribution, an example software program written in C language is offered for the 2IRP
model proposed in the contribution IEEE802.16.3c-01/30r1 and IEEE802.16.3c-00/58, the flow
chart and comments are included to ease the reading of the program. It may help MAC/PHY
proponents to shorten their development cycle for the traffic simulations. This is just a preliminary
reference for understanding the basic structure of the model; no one is obligated to employ it.

Purpose Post on the web server for public access.

Notice This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on
the contributing individual(s) or organization(s). The material in this document is subject to change in form and
content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained
herein.

Release The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and
any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any
IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole
discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The
contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent
Policy and
Procedures

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0)
<http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known
use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-
developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants
under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to
reduce the possibility for delays in the development process and increase the likelihood that the draft publication will
be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or
electronic form, of any patents (granted or under application) that may cover technology that is under consideration
by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site
<http://ieee802.org/16/ipr/patents/notices>.

2001-03-06 IEEE 802.16.3c-01/34

 1

C-Program for 2IRP Streaming Video Model

T. Wen, N. Molligoda and J. Huang
Carleton University

I. Introduction

In this contribution, an example C program is offered for simulating the traffic generated from a 2IRP model
proposed in the contribution [3] IEEE802.16.3c-01/30r1 and [4] IEEE802.16.3c-00/58. Details on the models are
not repeated here, we assume you have read both contributions.

To simulate the exponentially distributed packet inter arrival time, a subroutine is written to generate random
numbers that follows the exponential distribution [1]. The initial random number generation is done using the
rand()function in C language [2]. A similar subroutine handles the generation of Pareto distributed sojourn
times.

We have verified the simulation result with theoretical calculation of the Hurst parameters against real video
trace. The average packets per unit-of-time is also very close to theoretical value after normalization for
compensating Pareto s thick tail effect.

This program has been developed as a part of the graduate course 94.581Y at Systems and Computer
Engineering Department of the Carleton University, Ottawa, Canada. The Word format of this file is
downloadable from the site [5].

2001-03-06 IEEE 802.16.3c-01/34

 2

II. Overall Flowchart

Here is the flow diagram for the whole program.

Figure 1. Flow Diagram

Start

Initialization

Total time <
Duration ?

End

No

Generate inter-
arrival time

Display
inter-arrival
time

Display
average
packets-per-
unit-time unit

yes

2001-03-06 IEEE 802.16.3c-01/34

 3

III. Program Break Down

The program composites of following sections:
Section 1: Notice.
Section 2: Defines the functions used in the program.
Section 3: Main section of the program. This contains

the initialization,
main loop and
displaying of

final results.
Main loop iterates until the simulation time is equal to the duration required. This duration is defined in
the initialization part.

Section 4: This section generates 2IRP packets using the IRP function defined in the section 5.
Section 5: This function generates IRP packets.
Section 6: Exponentially distributed random number generator.
Section 7: Pareto distributed random number generator.
Section 8: Draws a line graph to depict the number of packets generated.

IV. Usage Guide

This program can be compiled using any C/C++ compilers and can be run on most of the operating systems
available.

To compile in Unix:

• gcc 2IRP.c -o 2IRP.exe -lm

To compile in Windows:

• Create a new project using the compilers (e.g. Visual C++) interface.

• Add the 2IRP.c file to the newly created project.

• Compile 2IRP.c and create a new exe (2IRP.exe) using the interface.

To execute:

• Run the 2IRP.exe.

• After the message "We will display the number of packets being " press enter to
continue.

• If plot() in Main is NOT commented out before compilation, a line graph will be flashed in the screen
depicting the number of packet per unit-of-time.

• Average packets-per-unit-time time will be displayed at the end of the execution.

2001-03-06 IEEE 802.16.3c-01/34

 4

• The program writes all inter-arrival times to a file named “iat.txt .

• All packets-per-unit-time is written to a file named "ppu.txt"

With some trivial modifications, the core part of this program can also be embedded in other simulators:

• Use section 5, 6 and 7 if child processing is available.

• Use section 4, 5, 6 and 7 if child process structure is not used.

• Section 6 and 7 may not need if your simulator already has them.

• Normalization in Section 3 can be embedded in section 4 or 5.

• You don t need Normalization if your implementation is perfect.

• By simply scale down input lambdas you can also skip the Normalization section.

• If you already have 4IPP model, all you need is section 7.

• By calling section 4 twice and skip section 7, it can generate 4IPP for Internet.

• By modified section 5 and skip section 7, it generates IDP for voice.

V. Further Study

Since Pareto distribution has large variance, we observe that in our implementation, the observed average packet
arriving rate is above the theoretical value. The way, we solve this implementation issue is to introduce a simple
brute force normalization, rather than making the program more delicate and complicate.

We achieved results very close to the theoretical average of 50.52 packets per unit time after we applied
Normalization for the Pareto thick tail compensation. Due to time limitation, the program is not fully tested.
More studies on these Pareto characteristics will be reported later, for improving the simulation precision.

All parameters used in the program (mean arrival rates, ON time Pareto parameters, OFF time Pareto
parameters and the duration to run the simulation) are hard coded in this version of code, but can be easily
changed to user inputs manner in a future version.

Pareto generator has only one parameter (shape parameter), the scaling parameter is assumed as 1, the next
release will address that, if there is a need.

VI. Reference

2001-03-06 IEEE 802.16.3c-01/34

 5

[1] Devroye, L, “Non-Uniform Random Variate Generation”, Springer-Verlag New York Inc. 1986

[2] Kernighan, B, “The C programming language”, Englewood Cliffs, N.J., Prentice Hall. 1988

[3] C.R. Baugh, J. Huang, "Traffic Model for MAC/PHY Simulations, IEEE802.16.3c-01/30r1, March, 2001.

[4] J. Huang, "Extending 4IPP Model for IEEE802.16.3", IEEE802.16.3c-00/58, Dec. 2000.

[5] http://www.sce.carleton.ca/courses/94581/index.html

2001-03-06 IEEE 802.16.3c-01/34

 6

VII. Appendix: The Program

/*
SECTION 1. NOTICE. $$$
*/

/* Copyright 2001, Tingjun Wen, Nalin Molligoda and Jun Huang,
Carleton University.

This software is a result of a project assignment of a graduate
course 94.581Y taught by Professor Jun Huang et al at Department
of Computer and System Engineering of Carleton University in
Capital region of Ottawa of the country of Canada.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 1.Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2.Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
SECTION 2, DECORATIONS. ~~~
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include <time.h>

double irp2(double * lambda, double * alpha1, double * alpha2);
double irp(double lambda, double alpha1, double alpha2);
double exp_rand(double lamda); /* Exponential random variable generator.*/
double pareto_rand(double alpha); /*Pareto random variable generator.*/
void plot(long packets_per_unit_of_time, int max);

/*
SECTION 3, MAIN. !!!

2001-03-06 IEEE 802.16.3c-01/34

 7

*/

void main(int argc, char * argv)
{

double duration = 170990.0; /* Time period for generating "2-hour
 simulated Starwar movie" packets,
 in unit-of-time (or MPEG frame) */

/**/
/* Default parameters for 2IRP model

*/
/* {IRP1, IRP2}

*/
/**/
double lambda[2] = {44.95, 61.90}; /* Mean arrival rates
*/
double alpha1[2] = { 1.14, 1.54}; /* ON time Pareto parameters */
double alpha2[2] = { 1.22, 1.28}; /* OFF time Pareto parameters */
/**/

/* iat: inter arrival time
 * ppu: packets per unit-of-time */
FILE * fp_iat, * fp_ppu;
char * file_name_iat = "iat.txt";
char * file_name_ppu = "ppu.txt";
double current_time = 0.0;
double inter_arrival_time = 0.0;
double next_frame_time = 1.0;
long packets_per_unit_of_time = 0;
long total_packets = 0;
long tmp_count;

/* duration = 20.0; /* test this program using small number of frames*/

/* Random number seed derived from current simulating time*/
srand((unsigned)time(NULL));

/* open a file to write the inter-arrival-time */
fp_iat = fopen(file_name_iat, "w");
if (fp_iat == NULL)
{

fprintf(stderr, "Error in creating file %s\n", file_name_iat);
exit(1);

}
/* open a file to write the packets per unit-of-time */
fp_ppu = fopen(file_name_ppu, "w");
if (fp_ppu == NULL)
{

fprintf(stderr, "Error in creating file %s\n", file_name_ppu);
fclose(fp_iat);
exit(1);

}

/* pop up messages to screen for "busy guys like you!" */

printf("We will display the number of packets being generated if you want, \n");
printf("press Enter key to continue, it may take a few minute...\n");

2001-03-06 IEEE 802.16.3c-01/34

 8

getchar();
printf("Writing inter-arrival-time data to iat file: %s\n", file_name_iat);
printf("Writing packets-per-unit-of-time data to file: %s\n\n", file_name_ppu);

/* keep on our iterations */
while (current_time <= duration && next_frame_time <= duration) {

inter_arrival_time = irp2(lambda, alpha1, alpha2);

/***
Due to Pareto’s "thick tail effect", we merge the 29th
and the 30th packets. This thins the point process and closes the gap
between continuum theory and discrete realities, it is proposed by
Professor Huang. After this compensation, the packets-per-unit-of-time
in average is very close to the theoretical calculation.
**/
tmp_count++;

/* merge 29th and 30th packets to compensate Pareto’s thick tail effect */
if ((tmp_count % 29) == 0) {

inter_arrival_time += irp2(lambda, alpha1, alpha2);
tmp_count++;

}

current_time += inter_arrival_time;
packets_per_unit_of_time++;
total_packets++;

/* output inter arrival times into a file */
fprintf(fp_iat, "%lf\n", inter_arrival_time);

/* output packets_per_unit_of_time */
while (current_time >= next_frame_time) {

fprintf(fp_ppu, "%ld\n", packets_per_unit_of_time);

/* :-) :-) :-) :-) :-) :-) :-) :-) @ (-: (-: (-: (-: (-: (-: (-: (-: */

/* To see the packets-per-unit-of-time graph,
 * uncomment the following line */
/* plot(packets_per_unit_of_time, (int)(lambda[0] + lambda[1])); */

packets_per_unit_of_time = 0;
next_frame_time += 1.0;

}
}

fclose(fp_ppu);
fclose(fp_iat);

/* pop up more messages to screen */

printf("Writing inter-arrival-time data to iat file: %s done\n", file_name_iat);
printf("Writing packets-per-unit-of-time data to file: %s done\n\n", file_name_ppu);
printf("Press Enter key to continue.\n");
getchar();
printf("\n\nAverage packets-per-unit-of-time is: %lf\n",

(double)total_packets / (double)next_frame_time);

2001-03-06 IEEE 802.16.3c-01/34

 9

printf("Press any key to exit.\n");
getchar();
return;

}

/*
SECTION 4, SUBROUTINE "MARRY". ++++++++++++++++++++++++++++++++++++++
*/

/* Superposition of 2 irp sources.
*
* Input : lambda[2], alpha1[2], alpha2[2]
* Output: inter_arrival_time
*/
double irp2(double * lambda, double * alpha1, double * alpha2)
{

static double current_time[2] = {0.0, 0.0};
static double last_packet_time = 0.0;
double inter_arrival_time;

/***
 +--------> current_time[0]
 |
 |__________|________|_______|_____|_____________|___

 |_______|________|_______|_____|__________|_______|_
 | |
 | +---> current_time[1]
 +-----------> last_packet_time
**/

/* if this is the first time this function is executed,
 * initialize current_time[2] = { 0.0, 0.0}.
 * Otherwise, collision happens, for simplicity, no packet is generated,
 * the introduced error if any will be compensated in section 3 */
while (fabs(current_time[0] - current_time[1]) <= 0.0) {

current_time[0] += irp(lambda[0], alpha1[0], alpha2[0]);
current_time[1] += irp(lambda[1], alpha1[1], alpha2[1]);

}

/* (1) Select the slow source.
 * (2) Inter arrival time is the difference between
 * last_packet_time and the slow source.
 * (3) Generate a new packet for the slow source */
if (current_time[0] < current_time[1]) {

inter_arrival_time = current_time[0] - last_packet_time;
last_packet_time = current_time[0];
current_time[0] += irp(lambda[0], alpha1[0], alpha2[0]);

} else if (current_time[0] > current_time[1]) {
inter_arrival_time = current_time[1] - last_packet_time;
last_packet_time = current_time[1];
current_time[1] += irp(lambda[1], alpha1[1], alpha2[1]);

}

return inter_arrival_time;
}

2001-03-06 IEEE 802.16.3c-01/34

 10

/*
SECTION 5, SUBROUTINE SINGLE . ||||||||||||||||||||||||||||||||||
*/

/* Single IRP source.
*
* Input : lambda, alpha1, alpha2
* Output: inter_arrival_time
*/
double irp(double lambda, double alpha1, double alpha2)
{

/* sojourn time left is initialized as 0.0, which means
 * initially it’s on the start edge of the OFF state */
static double sojourn_time_left = 0.0;
double inter_arrival_time;
double exp_rv;

/***
 ON OFF ON OFF
 ___________________ _________________
 |__|___|____|_____|__________|____|____|_____|_______|
 | | | | |
 _/|________/ ________/ _____________/
 | | | | |
 | | | | +--> pareto_rand(alpha1)
 | | | +---------------> pareto_rand(alpha2)
 | | +--------------------------> sojourn_time_left
 | +-------------------------------> current_packet
 +---------------------------------> exp_rand(lambda)
**/

inter_arrival_time = exp_rand(lambda);
/* if it’s in ON state, inter arrival time obeys
 * exponential distribution */
if (sojourn_time_left - inter_arrival_time >= 0.0) {

/* deduct the sojourn time by Poisson interval */
sojourn_time_left -= inter_arrival_time;

}
/* if it’s in OFF state, inter arrival time is
 * roughly equal to OFF time. To simplify the process
 * We assume Expectation(Poisson(lambda)
 * << {Expectation(Pareto(alpha1), Expectation(Pareto(alpha2)}
 * which is 97% true in practice. The compensation for the
 * rest 3% is made at Section 3 */
else {

inter_arrival_time += pareto_rand(alpha2);
/* no packet on rising edge of OFF state*/
exp_rv = exp_rand(lambda);
inter_arrival_time += exp_rv;
sojourn_time_left = pareto_rand(alpha1) - exp_rv;

}

return inter_arrival_time;
}

/*

2001-03-06 IEEE 802.16.3c-01/34

 11

SECTION 6, SUBROUTINE EXP. eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
*/

/* Exponential distribution random number generator.
* f(x) = lambda * exp(-lambda * x)
* inversion: -log(z) / lambda
*/
double exp_rand(double lambda)
{

/* uniformly distributed random variable */
int U;

/* get uniformly distributed random variable
 * in (0.0, RAND_MAX) */
do {

U = rand();
} while ((U == 0) || (U == RAND_MAX));

/* convert it to exponentially distributed random
 * variable using inversion method and return it. */
return (-(log((double)U) - log((double)RAND_MAX)) / lambda);

}

/*
SECTION 7, SUBROUTINE PAR. pppppppppppppppppppppppppppppppp
*/

/* Pareto distribution random number generator.
* f(x) = a * b / x ** (a + 1)
* inversion: b / z ** (1 / a)
*
* Note, in this example program, unit of time (b) is assumed as 1.
* Because of this, only one parameter is used in the Pareto random number generation.
*/
double pareto_rand(double alpha)
{

/* uniformly distributed random variable */
int U;

/* get uniformly distributed random variable
 * in (0.0, RAND_MAX) */

 do {
U = rand();

} while ((U == 0) || (U == RAND_MAX));

/* convert it to Pareto distributed random
 * variable using inversion method and return it. */
return(1.0 / pow((double)U / (double)RAND_MAX, (1.0 / alpha)));

}

/*
SECTION 8, SUBROUTINE "SHOW-TIME". :-) :-) :-) :-) :-) :-) :-) :-)
*/

void plot(long packets_per_unit_of_time, int max)

2001-03-06 IEEE 802.16.3c-01/34

 12

{
int i;
/* assume your screen is 80x25 */

#define SCREEN_WIDTH 79
int delta = (int)((float)max / (float)SCREEN_WIDTH + 1.0);

putchar(’.’);
for (i= 0; i < packets_per_unit_of_time; i += delta) {

putchar(’_’);
if (i >= delta * SCREEN_WIDTH) {

putchar(’*’);
break;

}
}
putchar(0X0A);

}

