<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>NBR-ADV changes – HO Ad-Hoc Consensus</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>2004-6-25</td>
</tr>
</tbody>
</table>

| Source(s) | Phillip Barber
Broadband Mobile Technologies, Inc.
8302 Sebastian Inlet
Frisco, Tx 75035
Voice: +1 (972) 365-6314
Fax: +1 (925) 396-0269
[mailto:pbarber@BroadbandMobileTech.com]
Prakash Iyer
David Johnston
Intel Corp.
2111 NE 25th Ave, MS: JF3-206,
Hillsboro, OR 97124
Voice: +1 (503) 264 1815
Fax: +1 (503) 264 4230
[mailto:prakash.iyer@intel.com]
[mailto:dj.johnston@intel.com]
Dongkie Lee
SK Telecom
15F, Seoul Finance Center, 84,
Taepyungpro 1 ga, Chung-gu, Seoul
Voice: +82 (11) 758-4359
Fax: +82-2-6323-4493
[mailto:galahad@sktelecom.com]
Min-Sung Kim
KT
17 Woomyeon-dong, Seocho-gu,
Seoul
137-792, Korea
Voice: +82-2-526-6109
Fax: +82-2-526-5200
[mailto:cyberk@kt.co.kr]
Sohyun Kim
Jungwon Kim
Jungje Son
Changhoi Koo
Hong Sung Jang
Samsung Elec.
416, Maetan-3dong, Youngtong-gu
Suwon-si, Gyeonggi-do, Korea
Voice: +82-31-279-5091
Fax: +82-31-279-5130
[mailto:binde.kim@samsung.com]
[mailto:jungwon74.kim@SAMSUNG.COM]
[mailto:jungje.son@samsung.com]
[mailto:chkoo@samsung.com]
Yong-Ho Kim
LG Electronics, Inc.
533, Hogye-1dong, Dongan-gu,
Anyang-shi, Kyongki-do, Korea
Voice: +82-31-450-4387
Fax: +82-31-450-7912
[mailto:ronnykim@lge.com]
Yigal Leiba
Itzik Kitroser
Yossi Segal
Zion Hadad
Runcom Technologies Ltd.
2 Hachoma St. 75655
Rishon Lezion, Israel
Voice: +972-3-9528440
Fax: +972-3-9528805
[mailto:yigall@runcom.co.il]
[mailto:itzikk@runcom.co.il]
[mailto:yossis@runcom.co.il]
[mailto:zionh@runcom.co.il]

0
Re: Response to HO Ad-Hoc Call for Contributions on IEEE 80.16e/D3

<table>
<thead>
<tr>
<th>Abstract</th>
<th>HO Optimization Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Provide for a mechanism to optimize handover handshaking when MSS service and/or operational context are made available to a Target BS prior to MSS HO processing</td>
</tr>
<tr>
<td>Notice</td>
<td>This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.</td>
</tr>
<tr>
<td>Release</td>
<td>The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.</td>
</tr>
</tbody>
</table>

Patent Policy and Procedures

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
NBR-ADV changes

Phillip Barber

Broadband Mobile Technologies

Problem:
The current NBR-ADV message elements do not adequately capture some of the needed and useful information for facilitating network entry and HO—the beneficial goal of providing the information in this message. Addition of message elements must be weighed against the constraint of the poor coding rate likely to be employed when transmitting the NBR-ADV broadcast message and restrict the size of the message to the minimum necessary to accomplish our goals.

Remedy:
Set an overall message loop change counter for the message, to cut down on iterative duplication. As part of the set of overall message change counter, need to establish separate change counters for the DCD and UCD messages. Individual counters for DCD and UCD seems warranted, as we expect the item variance not to correlate.

Change N_NEIGHBOR counter to encompass the full variety of PHY connection permutations for all PHY modes by setting to Neighbor BS ID + Preamble Index + DCD.

Eliminate HMAC Tuple from broadcast message. Will likely use an alternate public shared key feature in the future for broadcast messages, but private key (between a specific MSS and specific BS) is inappropriate use of HMAC Tuple.

Provide clear language that certain message items inside the N_NEIGHBORS loop are required the first time presented in the message, but need not be duplicated in the immediate subsequent N_NEIGHBORS loop iteration.

Establish the length of the items inside the N_NEIGHBORS loop to assist decoding and MSS decision to ignore useless data.

Change to only use least significant 24-bits of Neighbor BS ID. Only need this portion in the loop because we are already presenting the 24 most significant bits as the Operator ID outside of the loop. Can save a lot of bytes with this change, but would require another outside nesting loop in the future to support presenting multiple Operator IDs. But since multiple Operator IDs are out of 16e scope, no problems.

Provide Preamble Index to provide adequate PHY connection unique separation when identifying Neighbor BS. This is necessary for SCa and OFDM PHY mode implementations and is consistent with other changes proposed in other contributions. Also gives information useful for MSS to more speedily synchronize with Neighbor BS.

Establish PHY Profile ID to assist in MSS determination and synchronization with Neighbor BS that may be using varying PHY profile elements: channel size, FFT size, etc….
We can also add HO Process Optimization flag language into NBR-ADV broadcast management message to give indication of likely HO process management messages that may be omitted and optimization of HO. MSS can use the information to prioritize interest in the HO decision process.

Establish independent change counters for Neighbor BS DCD and UCD reflecting the change counters for those elements at the Neighbor BS.

Following sections specify text changes to the D3 draft:

Remedy 1:
[In 6.3.2.3.50 Neighbor Advertisement (MOB-NBR-ADV) message, page 22, line 46, modify as]:
A BS shall generate MOB-NBR-ADV messages in the format shown in Table 92d. The following parameters shall be included in the MOB-NBR-ADV message unless otherwise noted as an optional item in which case they may be included

Operator ID - the unique network ID shared by an association of BS

Configuration Change Count - Incremented by one (modulo 256) whenever any of the values relating to any included data element changes. If the value of this count in a subsequent MOB-NBR-ADV message remains the same, the MSS can quickly disregard the entire message.

N_NEIGHBORS - The count of the unique combination of Neighbor BS ID and Preamble Index and DCD

HMAC Tuple (see 11.4.11 in IEEE Standard P802.16-REVd/D3-2004) - The HMAC Tuple Attribute contains a keyed Message digest (to authenticate the sender).

For each advertised N_NEIGHBOR, the following TLV parameters shall be included. Required message items may be omitted if duplicating the immediate previous iteration of N_NEIGHBORS in the same message:

Length - Length of message information within the iteration of N_NEIGHBORS in bytes

Neighbor BS-ID - The least significant 24 bits of the Base Station ID parameter in the DL-MAP message of Neighbor BS.

Preamble Index - The index for the PHY profile specific preamble. Preamble Index is PHY specific for SCAs and OFDMA. The value of Preamble Index shall be ignored and a value of ‘0x00’ shall be used for OFDM PHY

PHY Profile ID – TBD

HO Process Optimization

HO Process Optimization is provided as part of this message is indicative only. HO process requirements may change at time of actual HO. For each Bit location, a value of “0” indicates the associated re-entry management messages shall be required, a value of ‘1’ indicates the re-entry management message may be omitted. Regardless of the HO Process Optimization TLV settings, the Target BS may send unsolicited SBC-RSP and/or REG-RSP management messages

Bit #0: Omit SBC-REQ/RSP management messages during current re-entry processing
Bit #1: Omit PKM-REQ/RSP management message during current re-entry processing
Bit #2: Omit REG-REQ/RSP management during current re-entry processing
Bit #3: Omit Network Address Acquisition management messages during current re-entry processing
Bit #4: Omit Time of Day Acquisition management messages during current re-entry processing
Bit #5: Omit TFTP management messages during current re-entry processing
Bit #6: Full service and operational state transfer or sharing between Serving BS and Target BS (ARQ, timers, counters, MAC state machines, etc…)

DCD Configuration Change Count - This represents the Neighbor BS current DCD configuration change count

UCD Configuration Change Count - This represents the Neighbor BS current UCD configuration change count

For each advertised Neighbor BS, the following TLV parameters may be included:

Mode Supported: Same with 11.4.2.13.1.

When Mode Supported bit indicate support Idle-mode, following TLV parameters may be included

- **Paging Group ID (16 bit)**: One or more logical affiliation groupings of BS
- **Neighbor BS ID**: Same as the Base Station ID parameter in the DL-MAP message of Neighbor BS
- **Physical Frequency**: DL center frequency (kHz).
- **Configuration Change Count**: Incremented by one (modulo 256) whenever any of the values relating to any included data element changes. If the value of this count in a subsequent MOB-NBR-ADV message remains the same, the MSS can quickly disregard the entire message.

All other parameters are coded as TLV tuples.

Remedy 2:

[In 6.3.2.3.50 Neighbor Advertisement (MOB-NBR-ADV) message, page 22, line 16, modify Table 92d—MOB-NBR-ADV Message Format]:

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOB_NBR-ADV_Message Format()</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Management Message Type =49</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Operator ID</td>
<td>24 bits</td>
<td>Unique ID assigned to the operator</td>
</tr>
<tr>
<td>Configuration Change Count</td>
<td>8 bits</td>
<td>Change count for this message</td>
</tr>
<tr>
<td>N_NEIGHBORS</td>
<td>8 bits</td>
<td>The count of the unique combination of Neighbor BS ID and Preamble Index and DCD</td>
</tr>
<tr>
<td>For (j=0; j<N_NEIGHBORS; j++)</td>
<td>8 bits</td>
<td>Length of message information within</td>
</tr>
<tr>
<td>Length</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Length</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Neighbor BS ID</td>
<td>48-24 bits</td>
<td>The least significant 24 bits of the Base Station ID parameter in the DL-MAP message of Neighbor BS.</td>
</tr>
<tr>
<td>Preamble Index</td>
<td>8 bits</td>
<td>The index for the PHY profile specific preamble. Preamble Index is PHY specific for SCa and OFDMA. The value of Preamble Index shall be ignored and a value of '0x00' shall be used for OFDM PHY.</td>
</tr>
<tr>
<td>DL Physical Frequency</td>
<td>32 bits</td>
<td>TBD</td>
</tr>
<tr>
<td>PHY Profile ID</td>
<td>16 bits</td>
<td>TBD</td>
</tr>
<tr>
<td>HO Process Optimization</td>
<td>8 bits</td>
<td>HO Process Optimization is provided as part of this message is indicative only. HO process requirements may change at time of actual HO. For each Bit location, a value of ‘0’ indicates the associated re-entry management messages shall be required, a value of ‘1’ indicates the re-entry management message may be omitted. Regardless of the HO Process Optimization TLV settings, the Target BS may send unsolicited SBC-RSP and/or REG-RSP management messages. Bit #0: Omit SBC-REQ/RSP management messages during current re-entry processing. Bit #1: Omit PKM-REQ/RSP management message during current re-entry processing. Bit #2: Omit REG-REQ/RSP management during current re-entry processing. Bit #3: Omit Network Address Acquisition management messages during current re-entry processing. Bit #4: Omit Time of Day Acquisition management messages during current re-entry processing. Bit #5: Omit TFTP management messages during current re-entry processing. Bit #6: Full service and operational state transfer or sharing between.</td>
</tr>
<tr>
<td>DCD Configuration Change Count</td>
<td>8 bits</td>
<td>This represents the Neighbor BS current DCD configuration change count incremented each time the information for the associated neighbor BS has changed.</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>UCD Configuration Change Count</td>
<td>8 bits</td>
<td>This represents the Neighbor BS current UCD configuration change count</td>
</tr>
<tr>
<td>TLV Encoded Neighbor information</td>
<td>variable</td>
<td>TLV specific</td>
</tr>
<tr>
<td>HMAC Tuple</td>
<td>21 bytes</td>
<td>See 11.4.11</td>
</tr>
</tbody>
</table>