Project	IEEE 802.16 Broadband Wireless Access Working O	Group <http: 16="" ieee802.org=""></http:>	
Title	Enhancements with MIMO Midambles for Cellular	OFDMA Systems	
Date Submitted	2004-07-08		
Source(s)	Wonil Roh, Sung-Eun Park, JeongTae Oh, Chan-	wonil.roh@samsung.com	
	Byoung Chae, Kyunbyoung Ko, Hongsil Jeong, Sung- Ryul Yun, Seungjoo Maeng, Panyuh Joo, Jaeho Jeon	Voice: +82-31-279-3868	
	Samsung Electronics Co., Ltd.		
	Erik Lindskog, K. Giridhar, Aditya Agrawal, David	elindskog@beceem.com	
	Garrett, B. Sundar Rajan, A. Paulraj	Voice: +1-408-387-5014	
	Beceem Communications, Inc.		
Re:	Contribution supporting TGe WG ballot #14b		
Abstract	Enhancements with MIMO Midambles for Cellular OF	DMA Systems	
Purpose	Adoption of proposed changes into P802.16e		
	Crossed-out indicates deleted text, underlined blue indicates number indicates newly added text from the original	ew text change to the Standard, and contribution	
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained berain		
Release	The contributor grants a free, irrevocable license to the IEEE to inco and any modifications thereof, in the creation of an IEEE Standards	prporate material contained in this contribution, publication; to copyright in the IEEE's name	
	any IEEE Standards publication even though it may include portion discretion to permit others to reproduce in whole or in part the result	s of this contribution; and at the IEEE's sole ting IEEE Standards publication. The	
	contributor also acknowledges and accepts that this contribution ma	y be made public by IEEE 802.16.	
Patent	http://ieee802.org/16/ipr/patents/policy.html , including the staten	nent "IEEE standards may include the known	
Policy and Procedures	use of patent(s), including patent applications, if there is technical ju developing committee and provided the IEEE receives assurance fro applicants under reasonable terms and conditions for the purpose of	stification in the opinion of the standards- om the patent holder that it will license implementing the standard."	
	Early disclosure to the Working Group of patent information that m reduce the possibility for delays in the development process and inc will be approved for publication. Please notify the Chair <mailto:r.b (granted="" 802.16="" 802.16.="" <a="" any="" application="" approved="" been="" by="" chair="" consideration="" electronic="" form,="" has="" href="http://ieee802.org/16/ipr/patents/notices" ieee="" of="" or="" patents="" site="" the="" under="" v="" web="" written="">http://ieee802.org/16/ipr/patents/notices>.</mailto:r.b>	ight be relevant to the standard is essential to rease the likelihood that the draft publication o.marks@ieee.org > as early as possible, in ion) that may cover technology that is under will disclose this notification via the IEEE	

Enhancements with MIMO Midambles for Cellular OFDMA Systems

Wonil Roh, JeongTae Oh, Chan-Byoung Chae, Kyunbyoung Ko, Hongsil Jeong, Sung-Ryul Yun, Seungjoo Maeng, Panyuh Joo, Jaeho Jeon, Jaeyeol Kim, Soonyoung Yoon

Samsung Electronics

Erik Lindskog, K. Giridhar, Aditya Agrawal, David Garrett, B. Sundar Rajan, A. Paulraj Beceem Communications, Inc.

Wen Tong, Peiying Zhu, Jianglei Ma, Ming Jia

Nortel Networks

1. Introduction

Current draft standard [1] specifies that the preamble is transmitted from a single antenna and does not provide a way to efficiently estimate multiple channels for multiple BS antennas. Allowing multiple preamble transmission offers performance gain for MIMO SS while degrades performances of SISO SS due to the reduced power per antenna. Therefore, in case of MIMO and non-MIMO SS coexist within a cell, multiple preamble transmission does not always guarantee the overall performance improvement. This contribution tries to tackle this problem and offers a solution that improves MIMO performance, especially for high mobility MIMO SS, but has little impact on non-MIMO SS at the same time.

It is assumed in the current standard that MIMO SS estimates the channel and tracks the time offsets as well as frequency offsets just by utilizing the sparsely scattered pilots inside the frame. The reality is, however, tracking of the time/frequency offsets with the error-prone estimated channels is often far from being ideal, especially for highly mobile SS. This problem is aggravated when the number of BS transmit antennas increases and the pilot density per antenna decreases. Therefore, the need of introducing a mechanism which insures good channel tracking and estimation arises.

The suggested remedy we propose is to use a midamble within a frame which is transmitted from all antennas. The ability to measure the channel quality in the entire bandwidth is particularly needed for band AMC operation, where each SS scans the entire frequency bandwidth and selects the best band to be used in the subsequent frames. Since the channels seen from different transmit antennas are more or less uncorrelated, choosing the best band based only on a channel from a single transmit antenna is far from being optimal. It is believed the MIMO midamble should provide robust starting point, after which pilot-aided (and decision-aided) channel tracking may be employed.

The proposed midamble features low PAPR characteristic and can differentiate up to 127 BS with up to 4 antennas each. Scalability is also considered and midamble sets for different FFT sizes (2048, 1024) are provided. The orthogonality between different antennas is maintained by disjoint sets of subcarriers dedicated to each antenna.

In this contribution, the midamble is placed at the first symbol in a specialized zone such as STC zone in the downlink. The proposed sets of midambles demonstrate low PAPR (see IEEE C802.16e-04/188 for complete PAPR performance). In order to keep backward compatibility with IEEE 802.16d standard [2], a reserved bit in STC_Zone_IE is used to indicate the presence of this midamble.

Current draft standard specifies preamble only for single antenna transmission, and does not provide a way to efficiently estimate channels from multiple BS antennas. The ability to measure the channel quality in the entire bandwidth is particularly needed for band AMC operation, where each SS scans the entire frequency bandwidth and selects the best band to be used in the subsequent frames. Since the channels seen from different transmit antennas are more or less uncorrelated, choosing the best band based only on a channel from a single transmit antenna is far from being optimal.

In this contribution, this problem is addressed by introducing midamble at the first symbol in a specialized zone such as STC zone in the downlink. This new set of midambles for different FFT sizes are differentiated by different transmit

antennas as well as different BS, and an indicator bit is inserted in STC_Zone_IE to indicate the presence of this midamble.

2. MIMO Midamble

2.1. STC Zone IE format

[Modify the Table 277a in Section 8.4.5.3.4 in page 73 in [1]]

Syntax	Size (bits)	Notes
STC_ZONE_IE() {		
Extended DIUC	4	STC/ZONE=0x01
Length	4	Length = $0x02$
Permutation	2	00 = PUSC permutation 01 = FUSC permutation 10 = Optional FUSC permutation 11 = Optional adjacent subcarrier permutation
Use All SC indicator	1	0 = Do not use all subchannels 1 = Use all subchannels
STC	2	$00 = \frac{\text{No STC STC using 2 antennas}}{01 = \text{STC using } \frac{23}{2} \text{ antennas}}$ $10 = \text{STC using 4 antennas}$ $11 = \text{FHDC using 2 antennas}$
Matrix indicator	2	Antenna STC/FHDC matrix (see 8.4.8) 00 = Matrix A 01 = Matrix B 10 = Matrix C (applicable to 4 antennas only) 11 = <u>Matrix D (applicable to 4 antennas only)</u> Reserved
Idcell	6	
<u>Midamble presence</u>	1	$\frac{0 = \text{not present}}{1 = \text{present at the first symbol in STC zone}}$
Reserved	<u>2</u> 3	Shall be set to zero
}		

Table 277a -OFDMA downlink STC_ZONE IE format

2.2. MIMO Midamble Sequences

[Add a new section 8.4.8.3.6]

8.4.8.3.6 MIMO Midamble Sequences

For the optional FUSC and optional AMC zones in the downlink, a midamble may be inserted at the first symbol in the STC zone defined by STC_Zone_IE() in order to measure channel quality from different BS antennas. In spectrum perspective a midamble comprises the subcarriers with even numbered Frequency Offset Indices every nth frequency indices for n-antenna BS, except for 3-antenna BS, where every 4th frequency indices are not used.

8.4.8.3.6.1 Midamble Sequences for 2-Antenna BS

For the 2 Tx Antenna, the frequency locations and corresponding values of the subcarriers in a midamble are defined as in the following formula.

$$P_{ID_{cell,s}}\left[k_{foi}\right] = \begin{cases} \left(1 - 2q_{ID_{cell}}\left[m\right]\right) & k_{foi} = 2m - \frac{N_{used}}{2} + s, m = 0, 1, L, \frac{N_{used}}{4} - 1\\ \left(1 - 2q_{ID_{cell}}\left[m - 1\right]\right) & k_{foi} = 2m - \frac{N_{used}}{2} + s, m = \frac{N_{used}}{4} + 1, \frac{N_{used}}{4} + 2, L, \frac{N_{used}}{2} - 1\\ 0, & otherwise \end{cases}$$
(1)

 $ID_{cell} \in \{0,1, L, 126\}, s \in \{0,1\}, k_{foi} \in \{-N_{FFT} / 2, -N_{FFT} / 2 + 1, L, N_{FFT} / 2 - 1\}$

The frequency-domain sequence $P_{ID_{cell,s}}[k_{foi}]$ in the above equation has a property that, when applied to IFFT at a transmitter, it is transformed to a time-domain sequence, the latter half of which is a replica of the first one. The factor $\sqrt{2}$ -is used to maintain the average power of a downlink midamble to the same level of that of other non-midamble OFDMA symbols. $q_{ID_{cell}}[m]$ is defined as follows.

$$R(r) = H_{128}(ID_{cell} + 1, \prod_{\lfloor \frac{r}{128} \rfloor} (r \mod 128)), r = 8 * \lfloor \frac{m}{9} \rfloor + m \mod 9 = 0,1,L$$
,191

A sequence T(k) is determined by IDcell and s and should be chosen to achieve low PAPR. $w_n^s \in \{0,1\}$ denotes the n-th value of the s-th Walsh sequence of length 8, where n is [0,7]. s is the antenna index. should be chosen to achieve low PAPR. $H_{128}(i, j)$ denotes the number at (i, j) of a 128 by 128 Walsh Hadamard matrix, where $i, j = 0,1, \bot, 127$. The first row vector of H_{128} is the all-one sequence and shall not be used. $\prod_{n=1}^{\infty} (l), l = 0,1, \bot, 127$ is the l-th value of the $\lfloor m/128 \rfloor$ -the permutation out of three-six predefined permutations shown in Table aaa.

<u>Table aaa – Permutation</u> (l = 0,1,L,127)

$\underline{\prod}_{0}(l)$	1, 65, 97, 113, 121, 125, 127, 126, 63, 94, 47, 86, 43, 84, 42, 21, 75, 100, 50, 25, 77, 103, 114, 57, 93, 111, 118, 59, 92, 46, 23, 74, 37, 83, 104, 52, 26, 13, 71, 98, 49, 89, 109, 119, 122, 61, 95, 110, 55, 90, 45, 87, 106, 53, 91, 108, 54, 27, 76, 38, 19, 72, 36, 18, 9, 69, 99, 112, 56, 28, 14, 7, 66, 33, 81, 105, 117, 123, 124, 62, 31, 78, 39, 82, 41, 85, 107, 116, 58, 29, 79, 102, 51, 88, 44, 22, 11, 68, 34, 17, 73, 101, 115, 120, 60, 30, 15, 70, 35, 80, 40, 20, 10, 5, 67, 96, 48, 24, 12, 6, 3, 64, 32, 16, 8, 4, 2, 0
$\prod_{1}(l)$	25, 77, 103, 114, 57, 93, 111, 118, 59, 92, 46, 23, 74, 37, 83, 104, 52, 26, 13, 71, 98, 49, 89, 109, 119, 122, 61, 95, 110, 55, 90, 45, 87, 106, 53, 91, 108, 54, 27, 76, 38, 19, 72, 36, 18, 9, 69, 99, 112, 56, 28, 14, 7, 66, 33, 81, 105, 117, 123, 124, 62, 31, 78, 39, 82, 41, 85, 107, 116, 58, 29, 79, 102, 51, 88, 44, 22, 11, 68, 34, 17, 73, 101, 115, 120, 60, 30, 15, 70, 35, 80, 40, 20, 10, 5, 67, 96, 48, 24, 12, 6, 3, 64, 32, 16, 8, 42, 21, 65, 97, 113, 121, 125, 127, 126, 63, 94, 47, 86, 43, 84, 42, 21, 75, 100, 50, 0
$\prod_2(l)$	71, 98, 49, 89, 109, 119, 122, 61, 95, 110, 55, 90, 45, 87, 106, 53, 91, 108, 54, 27, 76, 38, 19, 72, 36, 18, 9, 69, 99, 112, 56, 28, 14, 7, 66, 33, 81, 105, 117, 123, 124, 62, 31, 78, 39, 82, 41, 85, 107, 116, 58, 29, 79, 102, 51, 88, 44, 22, 11, 68, 34, 17, 73, 101, 115, 120, 60, 30, 15, 70, 35, 80, 40, 20, 10, 5, 67, 96, 48, 24, 12, 6, 3, 64, 32, 16, 8, 4, 2, 1, 65, 97, 113, 121, 125, 127, 126, 63, 94, 47, 86, 43, 84, 42, 21, 75, 100, 50, 25, 77, 103, 114, 57, 93, 111, 118, 59, 92, 46, 23, 74, 37, 83, 104, 52, 26, 13, 0
$\prod_{3}(l)$	<u>69, 99, 112, 56, 28, 14, 7, 66, 33, 81, 105, 117, 123, 124, 62, 31, 78, 39, 82, 41, 85, 107, 116, 58, 29, 79, 102, 51, 88, 44, 22, 11, 68, 34, 17, 73, 101, 115, 120, 60, 30, 15, 70, 35, 80, 40, 20, 10, 5, 67, 96, 48, 24, 12, 6, 3, 64, 32, 16, 8, 4, 2, 1, 65, 97, 113, 121, 125, 127, 126, 63, 94, 47, 86, 43, 84, 42, 21, 75, 100, 50, 25, 77, 103, 114, 57, 93, 111, 118, 59, 92, 46, 23, 74, 37, 83, 104, 52, 26, 13, 71, 98, 49, 89, 109, 119, 122, 61, 95, 110, 55, 90, 45, 87, 106, 53, 91, 108, 54, 27, 76, 38, 19, 72, 36, 18, 9, 0</u>
$\prod_4(l)$	102, 51, 88, 44, 22, 11, 68, 34, 17, 73, 101, 115, 120, 60, 30, 15, 70, 35, 80, 40, 20, 10, 5, 67, 96, 48, 24, 12, 6, 3, 64, 32, 16, 8, 4, 2, 1, 65, 97, 113, 121, 125, 127, 126, 63, 94, 47, 86, 43, 84, 42, 21, 75, 100, 50, 25, 77, 103, 114, 57, 93, 111, 118, 59, 92, 46, 23, 74, 37, 83, 104, 52, 26, 13, 71, 98, 49, 89, 109, 119, 122, 61, 95, 110, 55, 90, 45, 87, 106, 53, 91, 108, 54, 27, 76, 38, 19, 72, 36, 18, 9, 69, 99, 112, 56, 28, 14, 7, 66, 33, 81, 105, 117, 123, 124, 62, 31, 78, 39, 82, 41, 85, 107, 116, 58, 29, 79, 0
$\prod_{5}(l)$	70, 35, 80, 40, 20, 10, 5, 67, 96, 48, 24, 12, 6, 3, 64, 32, 16, 8, 4, 2, 1, 65, 97, 113, 121, 125, 127, 126, 63, 94, 47, 86, 43, 84, 42, 21, 75, 100, 50, 25, 77, 103, 114, 57, 93, 111, 118, 59, 92, 46, 23, 74, 37, 83, 104, 52, 26, 13, 71, 98, 49, 89, 109, 119, 122, 61, 95, 110, 55, 90, 45, 87, 106, 53, 91, 108, 54, 27, 76, 38, 19, 72, 36, 18, 9, 69, 99, 112, 56, 28, 14, 7, 66, 33, 81, 105, 117, 123, 124, 62, 31, 78, 39, 82, 41, 85, 107, 116, 58, 29, 79, 102, 51, 88, 44, 22, 11, 68, 34, 17, 73, 101, 115, 120, 60, 30, 15, 0

8.4.8.3.6.2 Midamble Sequences for 3-Antenna BS

For the 3 Tx Antenna, the frequency locations and corresponding values of the subcarriers in a midamble are defined as in the following formula.

$$P_{ID_{cell,s}}\left[k_{foi}\right] = \begin{cases} \sqrt{\frac{4}{3}} \cdot \left(1 - 2q_{ID_{cell}}\left[m\right]\right) & k_{foi} = 4m - \frac{N_{used}}{2} + s, m = 0, 1, L, \frac{N_{used}}{8} - 1\\ \sqrt{\frac{4}{3}} \cdot \left(1 - 2q_{ID_{cell}}\left[m-1\right]\right) & k_{foi} = 4m - \frac{N_{used}}{2} + s, m = \frac{N_{used}}{8} + 1, \frac{N_{used}}{8} + 2, L, \frac{N_{used}}{4} - 1 \end{cases}$$
(5)

$$ID_{cell} \in \{0, 1, L, 126\}, s \in \{0, 1, 2\}, k_{foi} \in \{-N_{FFT}/2, -N_{FFT}/2 + 1, L, N_{FFT}/2 - 1\}$$

<u>The factor $\sqrt{\frac{4}{3}}$ is used to maintain the average power of a downlink midamble to the same level of that of other non-</u> midamble OFDMA symbols. $q_{ID_{cell}}[m]$ is defined as follows.

[FFT size = 2048]

$$q_{ID_{cell}}[m] = \begin{cases} R(16*\left\lfloor\frac{m}{18}\right\rfloor + m \mod 18), & where \ m \mod 18 = 0,1,L \ ,15 \\ T(2*\left\lfloor\frac{m}{18}\right\rfloor + m \mod 2), & where \ m \mod 18 = 16,17 \end{cases} \qquad m = 0,1,L \ ,430 \ (5)$$

$$R(r) = H_{128}(ID_{cell} + 1, \ \prod_{\left\lfloor\frac{r}{128}\right\rfloor}(r \mod 128)), \ r = 16*\left\lfloor\frac{m}{18}\right\rfloor + m \mod 18 = 0,1,L \ ,383$$

[FFT size = 1024]

$$q_{ID_{cell}}[m] = \begin{cases} R(8*\left\lfloor\frac{m}{9}\right\rfloor + m \mod 9), & where \ m \mod 9 = 0,1,L,7 \\ T(\left\lfloor\frac{m}{9}\right\rfloor), & where \ m \mod 9 = 8 \end{cases} \qquad m = 0,1,L,214$$
(6)
$$R(r) = H_{128}(ID_{cell} + 1, \prod_{\left\lfloor\frac{r}{128}\right\rfloor}(r \mod 128)), \ r = 8*\left\lfloor\frac{m}{9}\right\rfloor + m \mod 9 = 0,1,L,191$$

A sequence $T(k)$ and the permutation $\prod_{\left\lfloor\frac{m}{128}\right\rfloor}(l), l = 0,1,L,127$ are the same as defined in 8.4.8.3.6.1.

[FFT size = 512]

$$q_{ID_{cell}}[m] = \begin{cases} R(8*\left\lfloor\frac{m}{9}\right\rfloor + m \mod 9), & where \ m \mod 9 = 0, 1, L, 7\\ T(\left\lfloor\frac{m}{9}\right\rfloor), & where \ m \mod 9 = 8 \end{cases} \qquad m = 0, 1, L, 106$$

$$R(r) = B_{ID_{cell}+1}g_{\prod(r)}, r = 8*\left\lfloor\frac{m}{9}\right\rfloor + m \mod 9 = 0,1, L 95$$

where the $k, 1 \le k \le$ can be converted into binary as $b_6 b_5 b_4 b_3 b_2 b_1 b_0$, define b_6 as MSB, b_0 as LSB, B_k is a low vector to represent $B_k = [b_0 b_1 b_2 b_3 b_4 b_5 b_6]$. The $g_u, 0 \le u \le 95$ is <u>u</u> th column vector of the following generator matrix <u>G</u>

 $\frac{B_k g_u \text{ is an inner product of } (1 \times 7) \text{ row vector and } (7 \times 1) \text{ column vector.}}{\prod(l), l = 0, 1, L 95 \text{ is shown in Table bbb as following}}$

<u>Table bbb – Permutation</u> (l = 0,1,L,95)

8.1,9,12,15,10,11,4,6,13,2,14,0,5,3,7,31,19,18,20,17,27,28,30,22,24,21,16,29,25,26,23,35,41,40,39,42,4 6.37,43,33,44,36,32,47,34,45,38,63,59,61,50,54,52,56,51,58,62,55,53,49,60,57,48,64,72,67,71,76,69,65 70,75,79,73,78,66,74,68,77,80,84,81,95,82,88,87,89,83,92,93,86,94,91,90,85

8.4.8.3.6.3 Midamble Sequences for 4-Antenna BS

For the 4-antenna BS, the frequency locations and corresponding values of the subcarriers in a midamble are defined as in the following formula.

$$P_{ID_{cell,s}}\left[k_{foi}\right] = \begin{cases} \left(1 - 2q_{ID_{cell}}\left[m\right]\right) & k_{foi} = 4m - \frac{N_{used}}{2} + s, m = 0, 1, L, \frac{N_{used}}{8} - 1\\ \left(1 - 2q_{ID_{cell}}\left[m - 1\right]\right) & k_{foi} = 4m - \frac{N_{used}}{2} + s, m = \frac{N_{used}}{8} + 1, \frac{N_{used}}{8} + 2, L, \frac{N_{used}}{4} - 1 \end{cases}$$
(5)
0, otherwise

 $ID_{cell} \in \{0,1,L,126\}, s \in \{0,1,2,3\}, k_{foi} \in \{-N_{FFT}/2, -N_{FFT}/2+1,L, N_{FFT}/2-1\}$

 $q_{ID_{cell}}[m]$ is defined as follows:

[FFT size = 2048]

$$q_{ID_{cell}}[m] = \begin{cases} R(16*\left\lfloor\frac{m}{18}\right\rfloor + m \mod 18), & where \ m \mod 18 = 0,1,L \ ,15 \\ T(2*\left\lfloor\frac{m}{18}\right\rfloor + m \mod 2), & where \ m \mod 18 = 16,17 \end{cases} \qquad m = 0,1,L \ ,430 _ (5)$$

$$R(r) = H_{128}(ID_{cell} + 1, \ \prod_{\left\lfloor\frac{r}{128}\right\rfloor}(r \mod 128)), \ r = 16*\left\lfloor\frac{m}{18}\right\rfloor + m \mod 18 = 0,1,L \ ,383$$

[FFT size = 1024]

$$q_{ID_{cell}}[m] = \begin{cases} R(8*\left\lfloor\frac{m}{9}\right\rfloor + m \mod 9), & where \ m \mod 9 = 0,1,L \ ,7 \\ T(\left\lfloor\frac{m}{9}\right\rfloor), & where \ m \mod 9 = 8 \end{cases} \qquad m = 0,1,L \ ,214 \ (6)$$

$$R(r) = H_{128}(ID_{cell} + 1, \ \prod_{\left\lfloor\frac{r}{128}\right\rfloor}(r \mod 128)), \ r = 8*\left\lfloor\frac{m}{9}\right\rfloor + m \mod 9 = 0,1,L \ ,191$$
A sequence $T(k)$ and the permutation $\prod_{\left\lfloor\frac{m}{128}\right\rfloor}(l), l = 0,1,L \ ,127$ are the same as defined in 8.4.8.3.6.1

[FFT size = 512]

$$q_{ID_{cell}}[m] = \begin{cases} R(8*\left\lfloor\frac{m}{9}\right\rfloor + m \mod 9), & where \ m \mod 9 = 0,1, L \ ,7 \\ m = 0,1, L \ ,106 \end{cases}$$

$$m = 0,1, L \ ,106$$

$$R(r) = B_{ID_{cell}+1}g_{\Pi(r)}, r = 8*\left\lfloor\frac{m}{9}\right\rfloor + m \mod 9 = 0,1, L \ 95$$

$$where the \ k,1 \le k \le \text{ can be converted into binary as } b_6b_5b_4b_3b_2b_1b_0 \ \text{. define } b_6 \ \text{as MSB}, \ b_0 \ \text{as LSB}, \ B_k \ \text{is a low vector}$$

$$to represent \ B_k = [b_0b_1b_2b_3b_4b_5b_6] \ \text{. The } g_u, 0 \le u \le 95 \ \text{is } u \text{ th column vector of the generator matrix } \overline{G} \ \text{in 8.4.8.3.6.2}$$

 $\frac{B_k g_u \text{ is an inner product of } (1 \times 7) \text{ row vector and } (7 \times 1) \text{ column vector.}}{\prod(l), l = 0, 1, L 95 \text{ is shown in Table bbb in 8.4.8.3.6.2}}$

References:

[1] IEEE P802.16e/D3 Air Interface for Fixed and Mobile Broadband Wireless Access Systems – Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands

[2] IEEE P802.16-REVd/D5-2004 Draft IEEE Standards for local and metropolitan area networks part 16: Air interface for fixed broadband wireless access systems

Appendix

Table 1. $T(k), k = 2* \left\lfloor \frac{m}{18} \right\rfloor + m \mod 2 = 0, 1, 2, L$, 94 (2-Tx, N=2048)

(last bit should be ignored)

ID cell	sequence	papr	ID cell	sequence	papr
0	CB77075FC4E595C61C650ED8	6.22165	64	5D8D0DE835A5BB31C555390F	5.84631
1	B668CA10178238581C775ED5	6.35344	65	04015C24F4597CF8B3FD9AE2	6.58931
2	E425870E83DA3BC8D6ABAD8A	6.27542	66	E8DF85F835A8376992A4EF06	6.12357
3	CD182D4096FCA43378A1FCDE	6.1957	67	963BC04D0BF89A4EFA38AEC2	6.2017
4	6DB1DECBAF16028424629A81	6.61497	68	8178D6727ECE4846BFC2E5D1	6.27209
5	D5F86FC51EF9AB687D1D7C51	6.10128	69	4B42B8833DBF7FD045389810	5.95606
6	42C7485C088055E620C703B7	6.06191	70	7F123B95FF2FECFDCE043A09	6.21315
7	95773AE2F2F5FDCB884EA608	6.05522	71	C9911F28A35F025AAED75FF1	6.00232
8	ACEA15EF5A93B9F0BD616B58	6.37804	72	9248FEB5FAC62F7D78BF1EF6	6.24573
9	47ADAC7406560064F8115FB2	5.96745	73	B31F8349B0E975CE2163DF5B	6.37011
10	621857F8E8584DF70B515B43	6.17527	74	5B5A23067188310302EC1DD8	5.89589
11	E7AFF39649B4BF40EA14AB82	5.96803	75	68DB010340E28CC8C03EDA8D	6.07042
12	63DF6E25075CF4AEC8BB7B37	6.20867	76	3D46C4FC0FA44A10A0F9AB50	6.44509
13	7926E816FFBE247BFB3523D8	5.84296	77	DEB60E06CF9B1A6B74E716C6	5.97516
14	AB6EF671538CED063D8D0409	6.12167	78	7998EF625BB13AA11F2E7CB5	6.48575
15	067C14A9AB654DCEDE98A865	6.1127	79	515E1AC51D4E4ED1EFE29833	5.67265
16	1303E594C4B70BA74F044900	6.03979	80	4C04969947DA02C1FE633F8E	6.09065
17	15039BDBA08FAE8F1029247B	6.20125	81	7998A7465F2132457AB8955C	5.9571
18	30212ECE434414F613077AA6	6.16053	82	C19D986D032DB17FE31CD9AE	6.11733
19	C02ED2DDB88FFEE6AB5337FE	6.02213	83	55122FEC7EC2F6A983DACE2F	6.10383
20	41DD40EB424DC2AD6BE05CF3	5.98464	84	671972100E23FC1C2796884D	5.84285
21	4342214C3081E2CF6E89287B	6.15659	85	BB553F62D04357FEA1ADE11A	5.95306
22	2E9609A7520EAAFD7BA0BC8A	5.97365	86	CC13B79839AC92C401858DA1	6.07147
23	38BB81327396436DFCE102BB	6.07687	87	2B93DE2AF1300F1FAF1F9751	6.04981
24	0D4A8D95714D1010B5219201	6.08646	88	8F16CAB5831F401D3BAAB50D	6.37539
25	154FC88D4A6923B3BA31D6D5	5.90776	89	3F40AABFC610C747A9F4DDC5	6.04727
26	60D3182A38229829D0702DE9	6.10261	90	5BEDB34AA1DDA2EF2EDD0481	6.0297
27	F9789A0CD65E4BB2EB7443A6	6.02325	91	54102D3D6073FF7626DFCBC1	6.31146
28	61ADAD010923C0E6894B2D7B	6.10446	92	E630EA96A202D642C2EF967D	5.80613
29	65A8BBD1AFC437C6D3C4145F	6.42242	93	A486DB042477809648FCC28C	6.04479
30	03CD3FAA0A04D7099245A65B	5.84834	94	6A7ACC2F5205733825DBDE99	6.22129
31	002AA85C8298BC0192E5544F	6.07626	95	10B48E798ACAD4AA3E3AE797	5.93029
32	F4A4F3DA98F4B30047562984	5.95313	96	3C09A801001ADFD4CF7D4D9E	6.63113
33	C118F99FCAE5718DC412F107	6.13199	97	604A7B78B8676F98C9334207	6.291
34	DA521751F85B23762F6A7504	6.30888	98	53D3D2BAC207B6C5C42676F7	6.06552
35	651EBF16F51584F1A971ED1D	5.88626	99	0A9D1F63F17334947DF42B21	6.04489
36	8BF7A3D3AADFE012FBDF0FE1	5.72985	100	7FD7D97FA71FCBA6019EEEB0	6.26544
37	26EE128397FB6F8E69E70392	5.67632	101	0216625445E183823625F640	6.17793
38	BE67761110AA0BCB745AEF97	6.09105	102	CADADFAC079D9472B6F1C029	5.85488
39	52CAC5943597BC412C6478A3	5.89786	103	A1113A754D6896527DD45687	6.14798
40	DA6407F19243A4F303114B5B	6.05399	104	0E81E99538FDF823EC486DEC	5.80826

41	AAB82F8281BACDF899E5D0D8	6.04693	105	91B429A6C280310AAFC0C21E	5.93907
42	AABBFD37272DCBAC1168184E	5.96119	106	1FD9DE37E6DFFE5E729AA055	5.91298
43	757F6F96FF3FDEC2E8FAD592	6.17933	107	8E050040BD230E8AA9D3038C	6.38312
44	1536BE3045FED596F3DC02A0	6.11286	108	53D5B27F74C75A8B54A00DFC	5.78173
45	C1AEA2142982477895F4CEFC	6.20865	109	719017F5E223C1C3892784A0	6.07714
46	4AF7E016C3BDCC26C3EC4800	6.34971	110	C1437202BCD94EBE97EF9DD2	6.38551
47	E66B11F92E058B44F8B0F300	6.21074	111	FF08F75A2A162E9891A833DD	6.28544
48	E3C3CEB0A084E3DC72AAA4FD	5.85822	112	60BFF734E28BDBE84F7EAA23	6.11139
49	8F2061FA66FADF172FE22BD8	6.29272	113	2B541A102414357896C06643	6.50841
50	0EAEE9C288AED9F4E184187F	5.93984	114	7B63011420A68DFF01E9FDC9	6.11687
51	A42AE1472E361F932DAB8033	5.88013	115	9ED14933BB684AB5D3FDE62D	6.1814
52	A155542ADC208C3EE4742C99	6.16644	116	CCD065BD17C0422875CDFB7D	6.03397
53	AA8A840077A6E198FDD827CE	5.85305	117	37C64C19988BC50A09D79120	5.72313
54	82222E6DF8EFE76A6D5582F6	6.03433	118	81CBC3CDDEE6060FF21DAAD2	5.98799
55	BE80D042A5F174FE2C3547D8	5.86104	119	C836CEA0ADE43D240EFE91B3	6.1621
56	DB1774BB3D1BD5031AC6E003	6.21079	120	ECA6EEB4B9B548D33CE24A59	6.25905
57	31502DE709C8E8D70033C18D	6.10352	121	978E9AC50F702EE7B3E7E37C	6.22352
58	A0540B1B0F0B51CFBEAD5E2F	6.07157	122	3F9E3940A8C1C1FD4E395300	5.69555
59	1541ECB66C740D347BDF8C4F	6.09198	123	26601EF6A0562FA81753DFA3	6.42779
60	61CF3D5EDB22623EE65E031C	6.22445	124	E1ED03E0A2D7FCDA6CEF5F4E	5.91695
61	AC40ED68234FE7F444BB2108	6.46086	125	9A7C7A9109D99741E165497B	6.15831
62	FA55AAE98754AD25A985E0C1	5.95659	126	E0FC939C021F2DE250ABEEF2	6.11713
63	4C919D7864A07BEA8C6AC24C	5.72737		·	•

Table 2.
$$T(k), k = 2* \left| \frac{m}{18} \right| + m \mod 2 = 0, 1, 2, L$$
, 46 (2-Tx, N=1024 or 4-Tx, N=2048)

(last bit should be ignored)

ID cell	sequence	papr	ID cell	sequence	papr
0	D088CE121099	5.66227	64	D80AF4BD51E9	5.8231
1	BE19AE1AF7F5	6.10532	65	2C443104EF7D	5.57905
2	D1024F61607F	5.47031	66	9FF5A30A6E98	5.54787
3	FFD16073A1D6	5.78104	67	7BDF08AB5376	5.32577
4	ECC4979DC7A8	5.43829	68	DAADCDB1C6CE	5.39698
5	0AE617602D61	5.49265	69	2FE6F8FC1BF7	5.54497
6	B300CCE9D099	5.53586	70	8F37A0139952	5.71968
7	633F54E20298	5.46205	71	B1E91A4C9677	5.79034
8	D06044066576	5.44115	72	DBE346281613	5.55909
9	A3DB1DD19254	5.73676	73	393E5EFACE8A	5.85929
10	D0C83A93D8A0	5.7145	74	110A8C0297DE	6.0833
11	E36B79645D19	5.40748	75	9DF0FF05A596	5.85995
12	42C8C4AA175A	5.64993	76	9343D83DEEE2	5.36045
13	4C1FA3317692	5.78842	77	33FEA057AC69	5.77107
14	6EB49E73C5D1	5.39798	78	37C789653FBB	5.71486
15	43E6A8F25CAC	5.62828	79	F5401FFF4C88	5.75793
16	CDCB70CC4186	5,55543	80	F9014BF47102	5,71708
17	D533DD50CE97	5.41124	81	ED42133BD829	6.00376
18	913A521BB291	5.4584	82	A0235CC28437	5.98352
19	CCAE39CC415D	5,53714	83	5E803E527C27	5,76979
20	E16D04FFA894	5 5247	84	2C7F2BFB3673	5 82109
20	99D12E2DFFF8	6.06748	85	13E34A8E8606	5 42021
21	1442BA2AF814	5 48042	86	6FB9F4579AFF	5 54023
22	F2/07 A 5F763B	5.61823	87	638657B68140	5.54025
23	B076D99B3F2C	6.13606	88	DA33054FF37F	5 7703
24	234655762689	5 36221	80	D2E401685063	5.92507
25	2004E4507E61	5 50703	00	6EE5C380DEBE	5.72507
20	CE693374DD34	5.46822	91	0E026697D513	5.68762
27	7EA8514E03E5	6.15637	02	EDE70A034054	5.08702
20	02BE66270182	5 80312	03	469B1BD3CD53	5.12637
30	020100270102 0B9C0F727FF2	5.63211	94	14CCC61D764F	5 57602
31	D7/ECEF7312D	5 74029	95	9E67ED95A03A	5.93891
32	EF6012BE7D44	5 91158	96	F867B2162C63	5.69613
32	ER854DEEE700	5./6136	97	0BCBB/3842/B	5.05015
34	6200B/185003	5.40130	08	6DCDD456/124D	5 30442
35	7832B5C80837	5.40023	90	E0740A56D46B	5.68350
36	A00572E8AE77	6 20040	100	545E1EDC20EE	5.08333
30	44E87B880DD8	5 08304	100	5684BD878F2	5 38820
28	44E87B880DD8	5 25006	101	E05D51C5E00E	5.70022
30	4038BBE10035	5.47500	102	5483DDF2421B	5 7805
40	4038BBE10033	5 88220	103	E699604 A 7279	5 78702
40	2529EC20812	5.62015	104	0P5D00E4EPD1	5.05061
41	B7D558C2B3AE	5 26202	105	9B3D00F4EBD1	5 26112
42	D/DJF0C2DJAF	5.50393	100	9C43C14EE09A	5.30112
43	2706C9104074	5 40264	107	2C10A0094252	5.1302
44	J/JUC01049/4	5.55001	108	2CTUAU084533	5.52447
45		5.53891	109	12D1333BDAU3	5.53802
40	TA24/215/E4C	5.52253	110	4CAD1E9CA983	5.90202
4/	DEPUTIALEEFBE	5.62275	111	FU9F33AA0433	5.89292
48	D08C9F344045	5.54968	112	D/994930A0DD	5.88024
49	70721EA2E124	5.67249	113	4B2CF/55//CE	5.70451
50	E647ADC74419	6.15904	114	3B64E84B7E53	5.38714
51	42EFBAF8ABB6	5.35146	115	D6E9FD5D692C	5.46964
52	65E0E4C9FE42	5.43829	116	404DB2F46758	5.61802
53	BF83A2C8E9DE	5.55059	117	364A4C8F58A3	5.18512
54	453D94DDF47B	5.54705	118	9018CD85D7F0	6.14053
55	D44FAB6000FB	5.52573	119	F55C5D185F7D	5.85524

IEEE C802.16e-04/161r1

56	7F12469717F7	5.61263	120	0304CA315DBA	5.47114
57	FBBE0D8C1C9C	5.3305	121	600662704FB6	5.55982
58	EA11560AE175	6.57779	122	3E8CED7650C6	5.28322
59	702ADC8FD746	6.04418	123	4984F931006E	5.55493
60	6520F8E24E27	5.33901	124	6D0061E6D953	5.67486
61	3FD9FDA2EE4C	5.85105	125	52C8B63941C3	5.62586
62	6045B912C727	5.34754	126	1B5F8355D2C3	5.43152
63	8E2B27B0C8C5	5.84279			

Table 3. $T(k), k = \left\lfloor \frac{m}{9} \right\rfloor = 0, 1, 2, L$, 22 (2-Tx, N=512 or 4-Tx, N=1024)

(last bit should be ignored)

ID cell	sequence	papr	ID cell	sequence	papr
0	6C1F5A	4.97361	64	E07D9A	5.21984
1	B316B7	4.97029	65	FE1944	5.19197
2	443206	4.67974	66	75B3A2	5.28233
3	AF8F12	5.14038	67	76C888	5.97299
4	FA10CB	5.63668	68	89561D	5.09544
5	D337F6	5.44914	69	49CFE0	5.50178
6	9E855B	5.59862	70	B7C7AF	5.11309
7	E4EFF3	5.39151	71	1F442F	5.55792
8	6C49D9	5.6987	72	4D3B24	6.19266
9	2FCB3A	5.3229	73	EAC05C	5.36774
10	052458	5.3982	74	A517F6	6.04943
11	62957D	5.11007	75	1A9545	5.99966
12	FDC1DC	5.30685	76	363200	5.08851
13	67189F	5.29941	77	539CB5	5.39483
14	5DCA1F	5.44929	78	2C899A	5.65198
15	7024DD	5.06986	79	5FA2CC	5.28374
16	76D133	5.1591	80	667491	5.8449
17	F3CF19	5.83553	81	14CE83	5.37736
18	6A7E1E	5.29067	82	B49CE7	5.49231
19	2B9075	5.31146	83	A2E172	5.29567
20	02C761	4.83125	84	B1C788	5.70411
21	8FD591	5.65578	85	8715B1	5.47128
22	BB719D	5.57877	86	EB8402	5.16585
23	4EB974	4.91816	87	AC531F	5.45399
24	E1B884	5.40552	88	88058C	4.95101
25	3756DE	4.97016	89	D54BED	6.27967
26	42851A	5.32551	90	F8D63C	4.92832
27	D022CD	5.38031	91	D30F5E	4.80216
28	5ADDCE	5.05668	92	13F9B8	5.37395
29	0F944B	5.46526	93	DA18D8	5.83116
30	E03D44	5.81444	94	072DF2	5.18797
31	B9E0E4	4.98952	95	1752E6	5.02768
32	D3782C	5.07308	96	BA8E30	5.08611
33	75BC4D	5.9198	97	414BFA	5.3167
34	60A970	5.81432	98	CDE9CE	5.63462
35	30A0C2	5.29301	99	925F98	5.07194
36	F88F27	5.50843	100	BFEA1E	5.70311
37	5915BB	5.17475	101	1076DC	4.8761
38	A6EE88	5.2782	102	F02961	5.24128
39	6EB975	5.36275	103	2224C9	5.16792
40	26B963	5.20685	104	F9FB48	5.58781
41	7C0C6F	5.12994	105	BDCCEE	5.37363
42	2C37EB	5.1122	106	48964B	5.58708
43	1FC2E0	5.29307	107	2F6C88	4.70346
44	8E6FB9	5.4982	108	BDE369	5.64959
45	194106	4.82756	109	F5ABC2	5.64354
46	0FD1D3	5.2403	110	267447	5.03984
47	FEBAFD	5.00465	111	EF672C	5.12635
48	61E56C	5.44707	112	9DC081	5.55262
49	9D6EC7	4.43605	113	A16516	5.78524
50	3E9118	5.96044	114	6A6CC0	5.3661
51	06ECCD	5.84277	115	301C98	5.58171
52	4CB57D	5.24288	116	8C5A9E	5.23938
53	887890	5.51219	117	273AC8	5.34106
54	0261AE	4.62132	118	F81BD4	6.00612
55	B0DAF9	5.90663	119	7678B6	5.61274

56	9BEB6E	5.13806	120	B0208F	5.23219
57	CE00A7	5.47452	121	8AA9DA	4.83732
58	FC1F8F	5.69578	122	F12C04	5.75277
59	8287E5	4.88742	123	24249B	5.81025
60	98DAE2	6.00215	124	DBE7B7	5.48953
61	97CF0A	5.24536	125	B5AAB1	5.55768
62	FF593F	5.21786	126	1D52D2	6.17998
63	DFD12C	4.54028			

Table 4. $T(k), k = \left\lfloor \frac{m}{9} \right\rfloor = 0, 1, 2, L$, 10 (4-Tx, N=512)

r		1			1
ID cell	sequence	papr	ID cell	sequence	papr
0	00001001001	6.69904	64	00000010000	6.57667
1	00000100100	5.60095	65	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \\$	8.46754
2	00001000000	6.57667	66	00011111010	5.72988
3	00001001000	5.19319	67	00001100110	6.32519
4	000000000000	7.78151	68	00100101011	4.94748
5	1000010000	7.04585	69	00000000100	6.57667
6	11011010110	6.43304	70	00011100001	5.71682
7	00100011110	5.37473	71	01011001011	5.79412
8	00100110011	5.65899	72	10101011010	6.18089
9	00000000100	6.57667	73	01011110100	6.61646
10	01101001010	7.60573	74	11010010110	7.45356
11	00110010001	6.07528	75	00101001001	5.79872
12	00000010100	5.56169	76	01111000011	6.64111
13	00001100001	5.86234	77	00110010010	4.74917
14	10101111001	5.58147	78	10000101101	5.61297
15	01111011101	5.99659	79	00000100010	6.93619
16	10011001011	6.32679	80	00001001011	6.19627
17	01001001011	5.91462	81	011101011111	5.85027
18	10001001101	4.96849	82	00111110001	6.4576
19	10000100000	7.06589	83	01111000001	6.56227
20	00001100001	5.73888	84	01101011101	5.63701
21	00000110000	8.20304	85	00111100001	7.28764
22	01111001011	6.81171	86	10100100111	6.45794
23	01010110000	6.04786	87	00000010001	6.27608
24	000000000000	6.70403	88	00011000011	6.39103
25	01000010000	5.19319	89	00001100000	7.03401
26	10011100011	5.70508	90	01111111101	6.84897
27	11100000001	5.99301	91	11111100000	7.90927
28	11100111010	6.23728	92	01010010010	5.24894
29	10111001010	6.05366	93	1 1 0 1 0 0 1 0 1 0 1	7.58764
30	01110101110	5.98197	94	01110010001	5.63541
31	10100010011	5.03246	95	01111001101	5.50983
32	01011111100	7.1076	96	10010111010	7.06557
33	00010100010	5.90476	97	11001110001	5.23289
34	000000000000	6.34336	98	00101100000	5.48283
35	01001000000	5.54357	99	11100110001	5.84074
36	10011111001	6.04447	100	11011110011	5.92681
37	10100111011	5.85827	101	01101101100	6.9433
38	00010000000	5.43569	102	11011101110	6.08103
39	0000000000000	6.19789	103	$1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0$	5.57448
40	00111011000	7.3564	104	01001010010	6.53345
41	01100101100	5.30735	105	10101000010	7.08354
42	01110010100	5.12931	106	00110101011	6.40913
43	01010110110	6.5207	107	11001010010	6.20059
44	11101110001	6.18911	108	$0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1$	4.99009
45	10110111010	6.07912	109	00100001110	6.11941
46	01000110010	5.53222	110	0000000000000	4.94881
47	00000100011	7.41328	111	01111001101	6.03451
48	10001000010	5.1473	112	00110110110	6.75509
49	00011110011	5.40813	113	11100100111	5.94006
50	10010001001	6.27513	114	11101111011	6.23249
51	00001000010	5.19319	115	10101100111	6.30366
52	01011010001	5.05186	116	00110000000	6.31294
53	00001101001	6.14901	117	01110110000	5.6406
54	00110000100	6.14504	118	01101110011	4.8845
55	10110001011	5.52188	119	00110011100	6.21549
56	00001101010	4.58312	120	10000011111	6.25313

IEEE C802.16e-04/161r1

57	01111101010	7.00465	121	$1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0$	5.63634
58	01000100000	7.28642	122	01110110001	4.72645
59	11111011101	6.06949	123	11010111010	7.65545
60	10011011001	6.4239	124	10110100100	7.27665
61	11000000000	6.29118	125	00000011011	7.59826
62	0101010101010	6.00713	126	10101101101	6.32406
63	11001100000	6.0206			