Project	IEEE 802.16 Broadband Wireless Access Working Group <http: 16="" ieee802.org=""></http:>						
Title	Space-Time Codes for 3 Transmit antennas for the OFDMA PHY						
Date Submitted	2004-07-14						
Source(s)	Erik Lindskog, V. Shashidhar, B. Sundar Rajan, Djordje Tajkovic, K. Giridhar, Erik Stauffer, Taiwen Tang, Tareq Al-Naffouri, David Garrett, Bob Lorenz, Babu Mandava, 						
Re:	802.16e/D4						
Abstract	Space-time codes for 3 transmit antennas with full diversity.						
Purpose	To propose 3 transmit antenna space-time codes for 802.16e/D4.						
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.						

Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http: 16="" ieee802.org="" ipr="" patents="" policy.html="">, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http: 16="" ieee802.org="" ipr="" notices="" patents="">.</http:></mailto:chair@wirelessman.org></http:>

Space-Time Codes for 3 Transmit antennas for the OFDMA PHY

Erik Lindskog, V. Shashidhar, B. Sundar Rajan, Djordje Tajkovic, K. Giridhar, Erik Stauffer, Taiwen Tang, Tareq Al-Naffouri, David Garrett, Bob Lorenz, Babu Mandava, A. Paulraj, Trevor Pearman, Kamlesh Rath, Aditya Agrawal, Mai Vu, Brett Schein

Beceem Communications, Inc.

Wonil Roh, JeongTae Oh, Chan-Byoung Chae, Kyunbyoung Ko, Hongsil Jeong, Sung-Ryul Yun

Samsung Electronics

Wen Tong, Peiying Zhu, Jianglei Ma, Ming Jia, Hang Zhang and Mo-Han Fong

Nortel Networks

Introduction

We propose space-time codes for 3 transmit antennas with full diversity. While these codes are specified as Space time codes, they may also be used as space frequency codes or as hybrids.

Proposed Space-Time Codes for 3 Antenna BS

We here propose rate 1, rate 2 and rate 3 codes with 3Tx schemes for the standard.

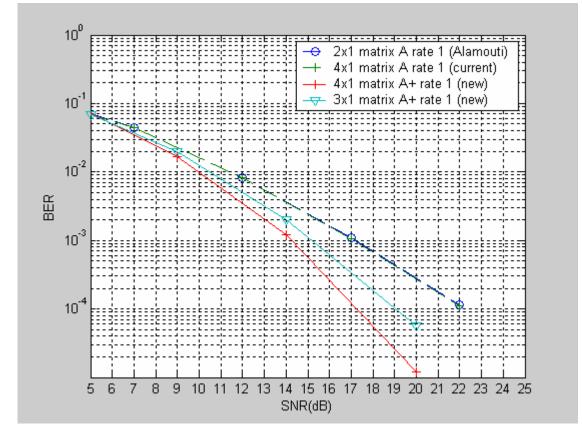
Let the complex symbols to be transmitted be $x_1, x_2, x_3, ..., x_8$ which take values from a square QAM constellation. Let $s_i = x_i e^{j\theta}$ for i=1,2,...,8, where $\theta = \frac{1}{2} \tan^{-1} 2$ and let

 $\tilde{s}_1 = s_{1I} + js_{3Q}$; $\tilde{s}_2 = s_{2I} + js_{4Q}$; $\tilde{s}_3 = s_{3I} + js_{1Q}$; $\tilde{s}_4 = s_{4I} + js_{2Q}$ where $s_i = s_{iI} + js_{iQ}$.

The proposed Space-Time-Frequency code (over two OFDMA symbols and two sub-carriers) for 3Tx-Rate 1 configuration with diversity order 3 is

$$A = \begin{bmatrix} \tilde{s}_{1} - \tilde{s}_{2}^{*} & 0 & 0 \\ \tilde{s}_{2} & \tilde{s}_{1}^{*} & \tilde{s}_{3} & -\tilde{s}_{4}^{*} \\ 0 & 0 & \tilde{s}_{4} & \tilde{s}_{3}^{*} \end{bmatrix}$$

where the ML decoding can be achieved by symbol-by-symbol decoding.


The 3 Tx – Rate 2 code we propose, with full diversity order of 3 is given below.

$$B = \begin{bmatrix} \widetilde{s}_1 & -\widetilde{s}_2^* \ \widetilde{s}_5 & -\widetilde{s}_6^* \\ \widetilde{s}_2 & \widetilde{s}_1^* & \widetilde{s}_6 & \widetilde{s}_5^* \\ \widetilde{s}_7 & \widetilde{s}_8 & \widetilde{s}_3 & \widetilde{s}_4 \end{bmatrix}$$

where the definition for the remaining variables are as follows:

$$\widetilde{s}_5 = s_{5I} + js_{7Q}$$
; $\widetilde{s}_6 = s_{6I} + js_{8Q}$; $\widetilde{s}_7 = s_{7I} + js_{5Q}$; $\widetilde{s}_8 = s_{8I} + js_{6Q}$

The uncoded BER for a flat, Rayleigh channel is included below, where the channel is assumed to be quasi-static over 2 OFDMA symbols. These codes are sent over 2 OFDMA symbols, and over 2 subcarriers. Please refer to [3] for details of 4x1 matrix A+.

where
$$\widehat{\omega}_k = e^{\frac{2\pi}{k}j}, k = 3, 9$$
.

The 3Tx Rate 3 code we propose is

Eode for 3x3 deleted

where $\omega_k = e^{\frac{2\pi j}{k}}$, k = 3,9. This code is the counterpart of 2Tx-Rate 2 and 4Tx-Rate 4 codes discussed above and provides diversity order 3.

The matrix C is used for spatial multiplexing.<u>Specific text changes</u> [Add to 802.16e/D3]

Add new section '8.4.8.3.5 Transmission schemes for 3 antenna BS'

STC for 3Tx-Rate 1,2 and 3:

For three antenna BS, one of the three transmission matrices A, B or C, shall be used:

Let the complex symbols to be transmitted be $x_1, x_2, x_3, ..., x_8$ which take values from a square QAM constellation. Let $s_i = x_i e^{j\theta}$ for i=1,2,...,8, where $\theta = \frac{1}{2} \tan^{-1} 2$ and let

 $\tilde{s}_1 = s_{1I} + js_{3Q}$; $\tilde{s}_2 = s_{2I} + js_{4Q}$; $\tilde{s}_3 = s_{3I} + js_{1Q}$; $\tilde{s}_4 = s_{4I} + js_{2Q}$ where $s_i = s_{iI} + js_{iQ}$.

The proposed Space-Time-Frequency code (over two OFDMA symbols and two sub-carriers) for 3Tx-Rate 1 configuration with diversity order 3 is

 $A = \begin{bmatrix} \tilde{s}_{1} - \tilde{s}_{2}^{*} & 0 & 0 \\ \tilde{s}_{2} & \tilde{s}_{1}^{*} & \tilde{s}_{3} & -\tilde{s}_{4}^{*} \\ 0 & 0 & \tilde{s}_{4} & \tilde{s}_{3}^{*} \end{bmatrix}$

 $B = \begin{bmatrix} \widetilde{s}_1 & -\widetilde{s}_2^* \ \widetilde{s}_5 & -\widetilde{s}_6^* \\ \widetilde{s}_2 & \widetilde{s}_1^* & \widetilde{s}_6 & \widetilde{s}_5^* \\ \widetilde{s}_7 & \widetilde{s}_8 & \widetilde{s}_3 & \widetilde{s}_4 \end{bmatrix}$

where the definition for the remaining variables are as follows:

$$\widetilde{s}_5 = s_{5I} + js_{7Q}$$
; $\widetilde{s}_6 = s_{6I} + js_{8Q}$; $\widetilde{s}_7 = s_{7I} + js_{5Q}$; $\widetilde{s}_8 = s_{8I} + js_{6Q}$

The matrix C is used for spatial multiplexing.

$$C = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix}$$

[Modify the Table 277a in Section 8.4.5.3.4]

Table 277a -OFDMA downlink STC ZONE IE format

Syntax	Size (bits)	Notes
STC_ZONE_IE() {		
Extended DIUC	4	STC/ZONE=0x01

Length	4	Length = $0x02$		
Permutation 2		00 = PUSC permutation 01 = FUSC permutation		
		10 = Optional FUSC permutation 10 = Optional FUSC permutation		
		11 = Optional adjacent subcarrier permutation		
Use All SC indicator	1	0 = Do not use all subchannels		
	1	1 = Use all subchannels		
STC	2	$00 = \frac{\text{No STC}2}{\text{No STC}2}$ antennas		
		$01 = \frac{\text{STC using } 2 \text{ antennas}}{3 \text{ antennas}}$		
		10 = STC using 4 antennas		
		11 = FHDC using 2 antennas		
Matrix indicator 2		Antenna STC/FHDC matrix (see 8.4.8)		
		00 = Matrix A		
		01 = Matrix B		
		10 = Matrix C (applicable to 4 antennas only)		
		11 = Reserved		
IDcell	6			
-Midamble presence	+	$\theta = \text{not present}$		
		1 = present at the first symbol in STC zone		
STC using 3 antennas	4	for STC using 3 antennas set this bit to 1, along with		
		setting $STC = 00$		
Reserved	31 3	Shall be set to zero		
}				

[Modify the Table 281a in Section 8.4.5.3.8]

Table 281aa – MIMO DL basic IE format

Matrix indicator	2	STC matrix (see 8.4.8.1.4)
Maurix mulcator	2	
		STCTransmit_divesity = STCtransmit diversity
		mode indicated in the latest STCTD_Zone_IE().
		if (STCTransmit_diversity == 0100) {
		00 = Matrix A
		01 = Matrix B
		10-11 = Reserved
		}
		elseif(STCTransmit_diversity == 1001) {
		00 = Matrix A
		01 = Matrix B
		10 = Matrix C
		11 = Reserved
		}
		elseif(STCTransmit_diversity == 10){
		00 = Matrix A
		01 = Matrix B

	10 = Matrix C 11 = Reserved }

[Modify the Table 282a in Section 8.4.5.3.9]

Table 282aa – MIMO DL Enhanced IE format

Matrix indicator	2	<pre>STC matrix (see 8.4.8.1.4) STCTransmit_diversity = STCtransmit diversity mode indicated in the latest STCTD_Zone_IE(). if (STCTransmit_diversity == 0+00) { 00 = Matrix A 01 = Matrix B 10-11 = Reserved } elseif(STCTransmit_diversity == 10)1 { 00 = Matrix C 11 = Reserved } elseif(STCTransmit_diversity == 10)1 00 = Matrix A 01 = Matrix B 10 = Matrix C 11 = Reserved }</pre>
------------------	---	---

[modify section 6.3.2.3.43.6.11 as follows]

Table 99d—Compact_DL-MAP IE format for MIMO Control

Syntax	Size (bits)	Notes
MIMO_Compact_DL-MAP_IE() {		
DL-MAP Type	3	Type = 7
DL-MAP Sub-type $= 3$	5	MIMO Control = $0x04$
Length	4	Length of the IE in Bytes

BITMAP length	4	in nibble
BITMAP	variable	size = BITMAP length x 4 bits
STC	2	STC order 00 = STC using 2 antennas 01 = STC using 3 antennas 10 = STC using 4 antennas 11 = Reserved
for (i = 0; i <count; i++)="" td="" {<=""><td></td><td>count = the number of '1' in BITMAP</td></count;>		count = the number of '1' in BITMAP
Matrix indicator	2	STC matrices (see 8.4.8.3) 00 = Matrix A 01 = Matrix B 10 = Matrix C 11 = Reserved
Num_layer	2	00 - 1 layer 01 - 2 layers 10 - 3 layers 11 - 4 layers
for (j=1;j <num_layer; j++)="" td="" {<=""><td></td><td>This loop specifies the Nep and RCID for layers 2 and above when required for STC. Nep, Nsch and RCID for the first layer comes from the compact DL- MAP IE.</td></num_layer;>		This loop specifies the Nep and RCID for layers 2 and above when required for STC. Nep, Nsch and RCID for the first layer comes from the compact DL- MAP IE.
Nep	4	
RCID	variable	
}		
}		
Padding	variable	The padding bits are used to ensure the IE size is integer number of bytes.
}		

[Modify a new section 11.8.3.7.6 in page 687 of [1]]

11.8.3.7.6 OFDMA MSS demodulator for MIMO support

Туре	Lengt h	Value	Scope
155	1	Bit #0: 2 BS Tx Matrix A Bit #1: 2 BS Tx Matrix B Bit #2: 3 BS Tx Matrix A Bit #3: 3 BS Tx Matrix A Bit #4: 3 BS Tx Matrix C Bit #5: 4 BS Tx Matrix A Bit #6: 4 BS Tx Matrix B Bit #7: 4 BS Tx Matrix C	SBC-REQ (see 6.3.2.3.23) SBC-RSP (see 6.3.2.3.24)

[Add following text to section 8.4.8.3.1 in page 96 of [1] as follows]

8.4.8.3.1 Allocation of pilot subcarriers

For 3-antenna BS, pilot allocation pattern shall first be changed as in the 2-antenna BS case, and then the neighboring two subcarriers shall be further allocated as pilots. This is shown in Figure ccc.

			Pilot for Ant-0
			[[]]]]]]]] Pilot for Ant-1
			Pilot for Ant-2

Figure ccc - Pilot allocation for 3-antenna BS for the optional FUSC and the optional AMC zones

References

[1] Zafar Ali Khan, B. Sundar Rajan and Moon Ho Lee,"On single-symbol and double-symbol decodable STBCs," Proceedings of IEEE Intl. Symposium on Information Theory (ISIT-2003), Yokohama, Japan, June 2003, p.127.

[2] IEEE P802.16e/D3 Air Interface for Fixed and Mobile Broadband Wireless Access Systems – Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands

[3] Erik Lindskog, et. al., "Enhancements of Space time Codes for OFDMA PHY", C802.16e 04/204r1