| Source: | Voice: (613)-763-1315
Fax: (613)-765-7723 | wentong@nortelnetworks.com |
|---------|---|--------------------------|
| Nortel Networks
3500 Carling Avenue
Ottawa, ON. K2H 8E9
CANADA | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| Jason Hou, Jing Wang, Sean Cai, Dazi Feng, Yonggang Fang | Voice: 858-554-0387
Fax: 858-554-0894 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| ZTE San Diego Inc.
10105 Pacific Heights Blvd.
San Diego, CA 92121
USA | Voice: 408-731-2870
Fax: 408-387-5099 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| Jeff.Zhuang@motorola.com
Xiangyang (Jeff) Zhuang, Kevin Baum, Fred Vook, Vijay Nangia, Mark Cudak | Voice: 858-554-0387
Fax: 858-554-0894 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| Jason Hou, Jing Wang, Sean Cai, Dazi Feng, Yonggang Fang | Voice: 858-554-0387
Fax: 858-554-0894 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| ZTE San Diego Inc.
10105 Pacific Heights Blvd.
San Diego, CA 92121
USA | Voice: 408-731-2870
Fax: 408-387-5099 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| Jeff.Zhuang@motorola.com
Xiangyang (Jeff) Zhuang, Kevin Baum, Fred Vook, Vijay Nangia, Mark Cudak | Voice: 858-554-0387
Fax: 858-554-0894 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| Jason Hou, Jing Wang, Sean Cai, Dazi Feng, Yonggang Fang | Voice: 858-554-0387
Fax: 858-554-0894 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| ZTE San Diego Inc.
10105 Pacific Heights Blvd.
San Diego, CA 92121
USA | Voice: 408-731-2870
Fax: 408-387-5099 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| Jeff.Zhuang@motorola.com
Xiangyang (Jeff) Zhuang, Kevin Baum, Fred Vook, Vijay Nangia, Mark Cudak | Voice: 858-554-0387
Fax: 858-554-0894 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| Jason Hou, Jing Wang, Sean Cai, Dazi Feng, Yonggang Fang | Voice: 858-554-0387
Fax: 858-554-0894 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| ZTE San Diego Inc.
10105 Pacific Heights Blvd.
San Diego, CA 92121
USA | Voice: 408-731-2870
Fax: 408-387-5099 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
| Jeff.Zhuang@motorola.com
Xiangyang (Jeff) Zhuang, Kevin Baum, Fred Vook, Vijay Nangia, Mark Cudak | Voice: 858-554-0387
Fax: 858-554-0894 | jhou@ztesandiego.com
jwang@ztesandiego.com
scai@ztesandiego.com
dfeng@ztesandiego.com
yfang@ztesandiego.com |
Re: Response to Recirculation Ballot #14c

Abstract
Propose a common Sync symbol to enhance initial cell search and facilitate fast cell search for handover.

Purpose
To incorporate the changes here proposed into the 802.16e D5 draft.

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Common SYNC Symbol for OFDMA

1 Introduction

In this contribution, we propose to introduce a common SYNC symbol in addition to the existing cell specific preamble. The common SYNC symbol uses a common PN sequence for all BSs and it is known to all MSSs, furthermore, such a common symbol possesses a time repetition structure, it allows facilitating the frame synchronization at cell edge and fine tuning for time and frequency synchronization including the frequency offset correction, the existing cell specific preamble (legacy preamble) can be used for the IDcell/segment identification and verification during the cell search or initial access.

2 Proposed Solution

The proposed design approach is to re-use the preamble structure (legacy preamble) defined IEEE802.16-2004 to provide basic preamble functionality and to achieve backward compatibility. An additional common SYNC symbol is introduced in the DL frame; such a common SYNC symbol is allocated at a fixed position and the last symbol in the DL frame, with \(N_{\text{COMMON FFSET}} \) symbol offset to the preamble, in every \(N_{\text{COMMON CYCLE}} \) frames. It possesses the following properties:

1. The structure is a 2-time repetition in time domain and only even sub-carriers are used in frequency domain.
2. Its location is identical across the network.
3. Its presence and location are deterministic.
4. The sequence of common SYNC symbol has a very low PAPR value.

The exact location of common SYNC symbol \(N_{\text{COMMON FFSET}} \) is TBD, a post-amble (the last symbol of DL frame) can be identified as location assignment.

The presence cycle of the common SYNC symbol \(N_{\text{COMMON CYCLE}} \) can be determined by the frame duration and common SYNC symbol periodicity in real time, see Table 1, in addition, such a common SYNC symbol can be assigned in very frame.

<table>
<thead>
<tr>
<th>(N_{\text{COMMON CYCLE}})</th>
<th>Common SYNC Time Interval (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Duration (ms)</td>
<td>4</td>
</tr>
<tr>
<td>2.0</td>
<td>2</td>
</tr>
<tr>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td>8.0</td>
<td>-</td>
</tr>
<tr>
<td>10.0</td>
<td>-</td>
</tr>
<tr>
<td>12.5</td>
<td>-</td>
</tr>
<tr>
<td>20.0</td>
<td>-</td>
</tr>
</tbody>
</table>

Comment: The overhead vs. \(N_{\text{COMMON CYCLE}} \) is listed in the Table 2: (5ms frame, DL:UL=2:1, DL=27, UL=15)

<table>
<thead>
<tr>
<th>(N_{\text{COMMON CYCLE}})</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>8</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead (%)</td>
<td>3.70</td>
<td>1.85</td>
<td>1.23</td>
<td>0.93</td>
<td>0.46</td>
<td>0.37</td>
<td>0.25</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Proposed Text

Add section 8.4.6.1.1.1 and 8.4.6.1.1.2

-------------------Start text -------------------

8.4.6.1.1.1 Common SYNC Symbol

In every \(N_{COMMON_CYCLE} \) (TBD) fourth downlink transmission frame, \(N_{COMMON_FFSET} \) (TBD) symbols after the preamble the last OFDM symbol is the common SYNC symbol; it can be transmitted by the BSs in the 1024/515/128 FFT modes by antenna 0. The mapping of the common SYNC sequence to the common SYNC symbol sub-carrier is defined by using the following formula:

\[
\text{Common_SYNC_Carrier_Set} = N_{LEFT_FFT} + 2k - 1
\]

where:

- \(k \) is the number of the running index \(1 \ldots (N_{FFT} - N_{LEFT_FFT} - N_{RIGHT_FFT} - 1)/2 \)
- \(N_{LEFT_FFT} \) is the number of guard sub-carriers of the left band of FFT size \(N_{FFT} \), \(N_{RIGHT_FFT} \) is the guard sub-carriers of the left band, the value of \(N_{LEFT_FFT} \) and \(N_{RIGHT_FFT} \) for 1024/515/128 FFT modes are listed in Table 309b/c/d, and the DC carrier shall always be zeroed.

The common SYNC symbol is defined by frequency domain as shown in Figure xxxx, the time domain illustration is shown in Figure yyyy.

The same common SYNC symbol is transmitted by all BSs across the network synchronously.

If the sequence is not defined in section 8.4.6.1.1.2, then first \(k \) elements of Table 246 shall be used to modulate the DL preamble sub-carriers.
8.4.6.1.1.2 Common SYNC Symbol Sequence

The common SYNC sequences *(TBD)* are listed in Table xxx.

<table>
<thead>
<tr>
<th>N<sub>FFT</sub></th>
<th>Sequence</th>
<th>PAPR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>473A0H21CE9527F3A0B20316AC873A0B21CE9527FKSFDFCE9527F3A0B20316AC80C5F4DE316AC873A0B20316AC800</td>
<td>3.22</td>
</tr>
<tr>
<td>512</td>
<td>7642362D90FED7642362ADFO18B642862D90FED79D290FED740</td>
<td>3.12</td>
</tr>
<tr>
<td>128</td>
<td>290A18B6423F920</td>
<td>2.89</td>
</tr>
</tbody>
</table>

----------End text ---------------------------