Idle handover & location update in 802.16e

Changhoi Koo, Jungje Son, Seungil Yoon, Hyongoo Kang, Geunhwi Lim
Samsung Electronic, Suwon P.O.Box 105, 416, Maetan-3dong, Yeongtong-gu, Suwon-si,Gyeonggi-do, Korea 442-742

Mailto:
chkoo@samsung.com
jungje.son@samsung.com
siyoon72@samsung.com
hyongoo.kang@samsung.com
geunhwi.lim@samsung.com

Re: Call for inputs for commentary of p802.16e/D1

This contribution describes Enhanced Handover Mechanism for supporting Active BS Set in IEEE P802.16e/D1-2004.

Discuss and Adopt enhanced feature of p802.16e/D1

This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Idle handover & Location Update in 802.16e.

Changhoi Koo, Jungje Son, Seungil Yoon, Hyongoo Kang, Geunhwi Lim
Samsung Electronics

1. Problem Statements
The concept of idle mode has been proposed in order to provide efficient power consumption (see C802.16e-04/27r1). During idle-mode, the performance optimized handover operation should be provided. In addition to whenever doing handover, its related operation such as location update should be also provided in line with handover in idle-mode.

In this contribution, we propose the simplified handover and location update procedures in idle mode. While a MSS in idle mode handover, the handover process is simply completed by that the MSS receives new configuration messages from the new Serving-BS without normal re-entry procedure. In addition, the MSS may register the location information if needed. Comparing to handovers taken place in awake or sleep mode, the MSS and BS does not require exchanging handover related MAC control messages. The BS is able to efficiently allocate CIDs because assigned CIDs, what is assigned by old Serving-BS, to the MSS can be reused immediately as soon as the BS and MSS enter the idle mode in the case of that the CID number is available in the new Serving-BS.

2. Overview of Proposed Solutions
The MSS in idle mode shall periodically scan the BS with the strongest signal on the corresponding frequency. An idle handover occurs when an MSS in idle mode moves from the coverage area of the current serving BS to the coverage area of another BS.

2.1. Handover operation in idle mode
Handover in idle mode is similar to existing handover concepts, but in this mode the MSS updates only parameters broadcast by MOB_NBR-ADV and UCD/DCD message and location information when the packet zone changed so that the additional overhead such as network re-entry can be reduced and provide light handover.

- The MSS shall update the neighbor set whenever it detects that the configuration change count of MOB_NBR-ADV message has been changed.
- After performing the idle handover, the MSS shall discard all unnecessary messages received in the broadcast CID of the old serving BS.
- The MSS shall start Normal Operation of idle mode with a new serving BS and perform the Location Registration if needed.
- If a new serving BS doses not support idle mode, the MSS shall perform the network re-entry and initialization procedures in order to transit to Awake mode.
- Through the idle handover, the MSS does achieve only the location update, not network initialization and its related all of operation.
- If the location update failed, the MSS may achieve the network initialization, retry of the location update or scan the neighbor BS according to the BS’s command through MOB_LU-RSP MAC message

2.2. Location update in idle mode
During the idle handover, the MSS shall perform location registration operation if the registration condition is met. Through the Location Registration, the MSS notifies the BS of its location, the paging parameters and other characteristics. The MSS informs the BS of its location so that the BS can efficiently page the MSS when the BS has a message destined to the MSS.
To provide the location registration process, we propose two location registration schemes as followings.

- **Zone-based registration**
 The MSS performs location registration either whenever it receives a paging message from the BS to perform the zone-based registration or when the packet zone is changed. The zone identifier, PZONE_ID, is transmitted on the MOB_NBR-ADV message.

- **Timer-based registration**
 The MSS periodically performs location registration whenever a predefined timer expires using MOB_LU-REQ message. The timer-based registration can be enabled or disabled by the BS.

On both the zone-based registration and the timer-based registration, the MSS shall inform the BS of its previous packet zone ID using a PREV_PZONE_ID of the MOB_LU-REQ message and the BS shall transmit the MOB_LU-RSP message in response to the MOB_LU-REQ message. If both the zone-based registration and the timer-based registration are enabled together, the MSS shall perform the zone-based registration.

2.3. The changes for proposed Idle-handoff

- 6.4.18.3 and subclauses have been created to address idle handover and location update operation.

- MOB_LU-REQ MAC management message
 - Registered Location update request
 - Required parameters for idle mode
 - From the MSS

- MOB_LU-RSP MAC management message
 - Mode change approval or reject
 - Negotiated parameters for idle mode
 - From the BS

3. Proposed Changes in Document

[Add following section on line 27 page 43]

6.4.18.3 Idle handover in idle mode

An idle handover is a handover in which the MSS moves to another BS from the serving BS. During idle mode, the MSS shall periodically scan the cell with the strongest signal and shall update the neighbor set information whenever it detects that the configuration change count of the MOB_NBR-ADV message has been changed. An MSS may perform an idle handover if such an action is necessary with respect to its PHY signal quality. While performing the idle handover, the MSS shall monitor all frames at least once in order to receive UCD, DCD, and MOB_NBR-ADV messages on the broadcast CID transmitted by the target BS and update handover related parameters in these messages. After receiving all these messages, the MSS shall resume the operation in idle mode and, if needed, the MSS performs the Location Registration using MOB_LU-REQ/RSP messages exchanging with BS.
The Figure shows the overview of performing the idle handover from BS1 to BS2.

If the BS does not support idle mode, the MSS shall perform the network re-entry and initialization procedures to transit its mode to Awake mode. During idle handover for a specified timer, *guard timer*, transmitted by the BS using *MOB_NBR-ADV* message, the MSS is prohibited performing successive idle handover. After a successful idle handover, the timer is reset.

6.4.18.3.1 Location registration procedure in idle mode

During idle handover, the MSS may perform the location update. Before transmitting *MOB_LU-REQ* message for location update MSS shall start Initial Ranging procedure with the serving BS in order to obtain Basic CID. After achieving successful location update, the serving BS may release Basic CID allocated to the MSS and the MSS return to idle mode. If the location update failed, the MSS shall act according to the *After_REQ_Action* in *MOB_LU-RSP* message. Through the location registration, the MSS notifies the BS of its location information and its related parameters. The BS can efficiently page the MSS when the BS has a message to transmit to the MSS based on the location information transmitted by the MSS.

6.4.18.3.1.1 Zone-based registration

The MSS perform the zone-based registration either when it receives a paging message from the BS to perform the zone-based registration or when the packet zone is changed. Each packet zone has its own zone identifier, *PZONE_ID* that is broadcasted in the *MOB_NBR-ADV* message. Geographically, a packet zone can consists of one or more cells.
6.4.18.3.1.2 Timer-based registration

Upon entering idle mode, the BS can enable or disable the MSS to register the location when a specified timer expires. The BS shall inform the MSS of timer-based registration capability using the TB_REGI REQUIRED field of the MOB IDL-RSP message. The MSS shall restart this timer when re-entering idle mode if the timer-based registration is enabled. The timer-based registration causes the MSS to register at regular intervals based on TB_REGI INTERVAL. If both the zone-based registration and the timer-based registration are enabled together, the MSS shall perform the zone-based registration. The MSS shall compute the timer expiration count as follows.

\[
TB_REGI_INTERVAL = 2^i \times T
\]

(where \(i\) is REST INTERVAL INDEX and \(T\) is the TB REGI INDEX.)

The TB REGI INTERVAL is an integral multiple of the REST INTERVAL and so the MSS can increment the timer-based registration counter every specified multiple of REST INTERVAL frames. The counter is reset when the timer is restarted.

![Diagram of Timer Based Location Update Procedure](image)

Figure XX. Timer Based Location Update Procedure

[Add messages on Table 14a page 18]

6.4.2.3 MAC Management Messages
Table 14b. MAC Management Messages

<table>
<thead>
<tr>
<th>Type</th>
<th>Message Name</th>
<th>Message Description</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>MOB_LU-REQ</td>
<td>Location update request message</td>
<td>Primary</td>
</tr>
<tr>
<td>TBD</td>
<td>MOB_LU-RSP</td>
<td>Location update response message</td>
<td>Primary</td>
</tr>
<tr>
<td>38, 57-255</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Add the following section on page 31]

6.4.2.3.57 Location Update Request (MOB_LU-REQ) Message

MSS supporting idle-mode uses the MOB_LU-REQ message to request permission from the BS to update its location. The MOB_LU-RSP message is sent from the MSS to the BS on the MSS’s primary CID.

Table XX. MOB_LU-REQ Message Format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOB_LU-REQ_Message_Format() {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management message type = ??</td>
<td>8</td>
<td>bits</td>
</tr>
<tr>
<td>REST_INTERVAL_INDEX</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PREV_PZONE_ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters shall be as follows:

REST_INTERVAL_INDEX
Start value for the rest interval index (measured in frame)

PREV_PZONE_ID
Packet zone ID of a previous serving cell

6.4.2.3.58 Location Update Response (MOB_LU-RSP) Message

The MOB_LU-RSP message shall be sent from BS to a MSS on the MSS’s primary CID in response to an MOB_LU-REQ message. After successful Location update, the MSS shall enter idle-mode using the parameters in the message.

Table XX. LR-RSP Message Format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOB_LU-RSP_Message_Format() {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management message type = ??</td>
<td>8</td>
<td>bits</td>
</tr>
<tr>
<td>LU approved</td>
<td>1</td>
<td>0 : Location update failed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 : Location update succeed</td>
</tr>
<tr>
<td>If (LU approved == 0) {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After-REQ-action</td>
<td>2</td>
<td>0: The MSS may retransmit the MOB_LU-REQ after the time</td>
</tr>
</tbody>
</table>
Parameters shall be as follows:

LU approved

The activation indication of the MSS when the MSS receives this message from the BS.

After-REQ-action

On MSS request to update its location rejected by the BS, indicate recourse action.

REQ-duration

Waiting value for the MOB_LU-REQ message re-transmission (measured in frames)

REST_INTERVAL_INDEX

Start value for the rest interval index (measured in frames)