<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Enhancements of the 4 transmit antenna rate 1 space-time code for the OFDMA PHY</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>2004-08-27</td>
</tr>
<tr>
<td>Source(s)</td>
<td>Erik Lindskog, V. Shashidhar, B. Sundar Rajan, Djordje Tajkovic, Tareq Al Naffouri, Erik Stauffer, Taiwen Tang, David Garrett, K. Giridhar, Bob Lorenz, Babu Mandava, A. Paulraj, Trevor Pearman, Kamlesh Rath, Aditya Agrawal, Mai Vu</td>
</tr>
<tr>
<td>Voice:</td>
<td>+1-408-387-5021</td>
</tr>
<tr>
<td>Fax:</td>
<td>+1-408-496-0040</td>
</tr>
<tr>
<td></td>
<td>elindskog@beceem.com</td>
</tr>
<tr>
<td>Beceem Communications, Inc.</td>
<td></td>
</tr>
<tr>
<td>Freedom Circle, Suite 101</td>
<td></td>
</tr>
<tr>
<td>Santa Clara, CA 95054</td>
<td></td>
</tr>
<tr>
<td>Re:</td>
<td>802.16e/D5</td>
</tr>
<tr>
<td>Abstract</td>
<td>We propose improved space-time codes with full diversity for 4 Tx – Rate 1</td>
</tr>
<tr>
<td>Purpose</td>
<td>To propose enhancements of the space-time codes in 802.16e/D4.</td>
</tr>
<tr>
<td>Notice</td>
<td>This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve the right to add, amend or withdraw material contained herein.</td>
</tr>
<tr>
<td>Release</td>
<td>The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.</td>
</tr>
<tr>
<td>Patent Policy and Procedures</td>
<td>The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html, including the statement “IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard.” Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:chair@wirelessman.org as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices.</td>
</tr>
</tbody>
</table>
Enhancement of the 4 Transmit Antenna Rate 1 Space-Time Code for the OFDMA PHY

Erik Lindskog, V. Shashidhar, B. Sundar Rajan, Djordje Tajkovic,
Tareq Al-Naffouri, Erik Stauffer, Taiwen Tang, David Garrett,
K. Giridhar, Bob Lorenz, Babu Mandava, A. Paulraj, Trevor Pearman,
Kamlesh Rath, Aditya Agrawal, Mai Vu

Beceem Communications, Inc.

Introduction

We propose a low decoding complexity (symbol by symbol decoding) improved space-time code with full diversity for 4 Tx – rate 1 configuration.

Proposed enhancement

STC for 4 Tx – Rate 1 code:

We propose to replace the existing transmission matrix

\[
A = \begin{bmatrix}
 s_1 & -s_2^* & 0 & 0 \\
 s_2 & s_1^* & 0 & 0 \\
 0 & 0 & s_3 & -s_4^* \\
 0 & 0 & s_4 & s_3^*
\end{bmatrix}.
\]

with the new the transmission matrix \(A_1 \) which is defined as follows:

Let the complex symbols to be transmitted be \(x_1, x_2, x_3, x_4 \) which take values from a square QAM constellation. Let \(s_i = x_i e^{i\theta} \) for \(i = 1, 2, 3, 4 \), where \(\theta = 66^\circ \) for QPSK, \(\theta = 74^\circ \) for 16QAM, and \(\theta = 58^\circ \) for 64 QAM and let

\[
\tilde{s}_1 = s_{1t} + js_{3Q} ; \tilde{s}_2 = s_{2t} + js_{4Q} ; \tilde{s}_3 = s_{3t} + js_{1Q} ; \tilde{s}_4 = s_{4t} + js_{2Q} \quad \text{where} \quad s_i = s_{it} + js_{iQ}.
\]

The proposed Space-Time-Frequency code for 4Tx-Rate 1 configuration is

\[
A_1 = \begin{bmatrix}
 \tilde{s}_1 & -\tilde{s}_2^* & 0 & 0 \\
 \tilde{s}_2 & \tilde{s}_1^* & 0 & 0 \\
 0 & 0 & \tilde{s}_3 & -\tilde{s}_4^* \\
 0 & 0 & \tilde{s}_4 & \tilde{s}_3^*
\end{bmatrix}.
\]
The first two columns correspond to the two OFDM symbols and one subcarrier. Similarly the last two columns correspond to the same two OFDM symbols, but for the next subcarrier. Let \(H^{(1)} = [H_1(l) \ H_2(l) \ H_3(l) \ H_4(l)] \) be the channel coefficients for the first subcarrier. The channel is assumed to be quasi-static for two OFDM symbols, but could be varying across the subcarriers. Let \(H^{(2)} = [H_1(2) \ H_2(2) \ H_3(2) \ H_4(2)] \) be the channel coefficients for the second subcarrier. Then, the received signal (assuming a single receive antenna) on the first sub-carrier is given by

\[
\begin{bmatrix}
Y_1^1 & Y_2^1
\end{bmatrix} = H^{(1)} A_1(1:2) + \text{noise}
\]

and for the second sub-carrier is given by

\[
\begin{bmatrix}
Y_1^2 & Y_2^2
\end{bmatrix} = H^{(2)} A_1(3:4) + \text{noise}
\]

where \(Y_j^i \) denotes the received symbol on the \(j^{th} \) subcarrier at time \(k \). \(A_1(1:2) \) denotes the 1\(^{st}\) and 2\(^{nd}\) columns of \(A_1 \) and similarly, \(A_1(3:4) \) denotes the 3\(^{rd}\) and 4\(^{th}\) columns of \(A_1 \). The above measurements can be re-written as follows:

\[
\begin{bmatrix}
Y_1^1 & Y_2^1 & Y_1^2 & Y_2^2
\end{bmatrix} = \begin{bmatrix}
H_1(l) & H_2(l) & H_3(2) & H_4(2)
\end{bmatrix} \begin{bmatrix}
Alamouti(\tilde{s}_1, \tilde{s}_2) \\
0 \\
Alamouti(\tilde{s}_3, \tilde{s}_4)
\end{bmatrix}
\]

This proposed change is guided by the following reasons: (i) The transmit diversity gain of \(A_1 \) is 4 whereas that of \(A \) in [1] is only 2; (ii) \(A_1 \) admits a decoupled symbol-by-symbol decoding for the variables which leads to a fast ML decoding (analogous to the Alamouti code for 2Tx). Fig. 1 shows the performance of this code using decoupled ML decoding of low complexity for QPSK.
Figure 1: Performance comparison for 4Tx-Rate 1 the current matrix A in the standard and proposed matrix A_1 for Pedestrian-B channel model, QPSK modulation, and Tail-biting Convolutional Code with Hard Decision Decoding.

![Graph showing performance comparison between 4x1 Matrix A and 4x1 Proposed for Pedestrian-B channel model.]

Figure 2: Performance comparison for 4Tx-Rate 1 the current matrix A in the standard and proposed matrix A_1 for Vehicular-A channel model, QPSK modulation, and rate $\frac{3}{4}$ Convolutional Turbo Code with Soft Decision Decoding.

Specific text changes

[Modify the following sections of 802.16e/D4]

8.4.8.3.4 Transmission schemes for 4-antenna BS (page 98):

Replace the existing transmission matrix A:

$$ A = \begin{bmatrix} s_1 & -s_2^* & 0 & 0 \\ s_2 & s_1^* & 0 & 0 \\ 0 & 0 & s_3 & -s_4^* \\ 0 & 0 & s_4 & s_3^* \end{bmatrix}. $$

With A_1 shown below:
where the complex symbols to be transmitted are x_1, x_2, x_3, x_4 which take values from a square QAM constellation and $s_i = x_i e^{j\theta}$ for $i=1,2,3,4$, where $\theta = 66^0$ for QPSK, $\theta = 74^0$ for 16QAM, and $\theta = 58^0$ for 64 QAM and also let

$$\tilde{s}_1 = s_{1l} + js_{1Q}; \tilde{s}_2 = s_{2l} + js_{2Q}; \tilde{s}_3 = s_{3l} + js_{3Q}; \tilde{s}_4 = s_{4l} + js_{4Q}$$

where $s_i = s_{il} + js_{iQ}$.

References

