Comment on the Pre-coding of STC for 3&4 Transmit Antennas

Date Submitted: 2004-08-24

Source: Wen Tong, Peiying Zhu, Dongsheng Yu, Ming Jia, Jianglei Ma, Mo-Han Fong, Hang Zhang and Brian Johnson
Nortel Networks
3500 Carling Avenue
Ottawa, ON. K2H 8E9
CANADA
Voice: (613)-763-1315
Fax: (613)-765-7723
wentong@nortelnetworks.com

Re: 3 and 4 antennas pre-coding contributions

Abstract: To highlight and compare the performance simulation results for 3 and 4 antenna pre-coding

Purpose: To provide the more simulation results on the rate-1 3 and 4 antenna pre-coding technique

Notice: This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Comment on the Pre-coding of Space Time Code for 3&4 Transmit Antennas

1 Introduction
Several contributions proposed the pre-coding for the space-time-coding transmission for 4-Tx and 3-Tx rate-1 code. These class of the non-linear pre-coding is based on the re-mapping of the real part and imaginary part of the modulation symbols onto the space time coding constellations, namely the Matrix-A. Such a mapping or pre-coding is designed to achieve the full diversity and full rate code at space time coding level only. However, when applying this technique into the specific end-to-end coding modulation system of OFDMA PHY, the gain of the pre-coding is diminished.

1.1 Calibration at Raw Bit Error Rate
In order to perform cross comparison of different simulation results, we first verify the performance at raw BER. In Figure 1, the published data and the simulation data obtained are matched well. It shown that at the raw BER level the pre-coding scheme does demonstrate the diversity order 4 and the provided additional gain over the matrix-A.

![Comparison of Rate-1 Four Transmit Space Time Codes](image)

Figure 1 Raw BER Performance for the Pre-Coding

However, as we can show in the following that such diversity gain can be diminished if the performance is evaluated at the FEC decoder output, full diversity gain achieved by the pre-coding is diminished. This is due to the fact that coding and modulation chain built in the OFDMA PHY can extract the diversity via sub-channel permutation, bit-interleave and FEC decoder.

1.2 Channel Weighted Soft De-mapping
In addition to the channel bit-interleave, at the FEC decoder side, the soft de-mapping of the bit should be weighted by MIMO channel information, this has a significant impact over the diversity performance of the FEC output. (see e.g. Proakis: "Digital Communications").
As we can see the hard decision FEC suffers the diversity loss and the simple channel weighted soft demapping should be implemented when comparing the different FEC coded STC methods.

1.3 Bit Interleave

The bit-interleave as a basic building block should also incorporated into the performance evaluation. As we can see the bit-interleave process can provide and extract the temporal diversity gain. As can be seen from Figure 3, @BLER=1%, we have the following conclusions for the 4 transmit rate-1 space time code:

1. There is about 1dB bit interleave gain for pre-coded matrix-A and
2. There is more than 1.5dB bit interleave gain for the basic matrix-A
3. The performance of pre-coded matrix-A has only 0.3dB gain over the basic matrix-A
4. For code rate lower and ¾ the gain of pre-coding is diminished

1.4 Complexity of Decoding of Pre-coded Matrix-A

In all the simulations for the pre-coding scheme in this contribution, the true MLD decoding is employed. Due to the constellation rotation at transmitter, the MLD decoder can not enjoy the simple slicing to perform the soft bit QAM demapping, the received constellation de-rotation prior to the QAM demapping is sub-optimal and suffers performance loss, therefore, the MLD decoder for the pre-coding can be only achieved by computing the Euclidean distance. This drastically increases the de-mapping complexity as compared the non-pre-coded matrix-A where the simplest bit slicing can be used for optimal QAM demapping.
1.5 Comparison of 2/3/4 Transmit Antenna Rate-1 STC Performance

For the rate-1 space time code matrix-A, @BLER=1%, 3-antenna matrix-A has only 0.2 dB gain over 2-transmit matrix-A, while 4-antenna matrix-A has about 1.5dB gain over 2-antenna matrix-A. See Figure 4, as we can see, there is not much room for the full-rate full diversity space time code, such as pre-coding to achieve significant performance enhancement for 3 antenna and 4 antenna case.
2 Conclusions
The diversity gain of full-rate full-diversity rate-1 space time pre-coding diminishes when the performance is evaluated at CTC decoder output. The added complexity for the pre-coding at both encoder and decoder (in particular for the QAM demapping) is significant and does not have the merit to tradeoff with the performance benefit.