
Title: LDPC coding for OFDMA PHY

Date Submitted: 2004-11-04

Source(s): Brian Classon
Yufei Blankenship
Motorola
brian.classon@motorola.com
yufei.blankenship@motorola.com

Re: IEEE P802.16-REVe/D5-2004, sponsor ballot

Abstract: This contribution provides an updated version of LDPC code provided by Motorola in contribution 374.

Purpose: Complete the LDPC specification text.

Notice: This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Overview

This contribution provides an updated version of the Motorola code provided in contribution 374. This updated version of the Motorola code was provided to the informal LDPC group developing an LDPC code design for 802.16e. The code has been qualitatively and quantitatively characterized. It has excellent flexibility and performance, as well as low encoding and decoding complexity.

Features

The LDPC code has excellent performance, and contains features that provide flexibility and low encoding/decoding complexity.

- **Structured block LDPC for low complexity decoding.** The entire matrix (i.e., both the sections that correspond to the information and the parity) is composed of the same style of blocks, which reduces decoder implementation complexity and allows structured decoding.
- **Low-complexity differential-style encoding.** The encoding can be performed in a structured, recursive manner, without hurting performance with multiple weight-1 columns.
- **Designed to match the OFDMA subchannel structure.** No puncturing or rate-matching operations are required to provide exact code rates for many different block sizes.
- **Compact representation.** The shift values for each block size are derived from the largest block size of that code rate, facilitating the representation and implementation of the encoder/decoder.
- **Compatible with hybrid ARQ (Chase or Incremental Redundancy).**

Simulation Results

Simulation results for rate 1/2, 2/3, and 3/4 code families are shown in Figure 1, Figure 2, Figure 3, respectively. The code sizes considered are $n = 48^z$, where z is the expansion factor. For rate 1/2, 2/3, and 3/4, 19 z values ranging from 12 to 48 are shown, which correspond to 19 code sizes with n ranging from 576 to 2304. The simulation conditions are: AWGN channel, BPSK modulation, maximum of 50 iterations using generic floating-point belief propagation. The code families have also been tested on fading channels with the other code proposals in the informal LDPC group, and were shown to have excellent performance.
Figure 1. FER performance of 19 $R = 1/2$ structured codes. Base matrix size: $m_b = 24$, $n_b = 48$. AWGN, BPSK.

Figure 2. FER performance of 19 $R = 2/3$ structured codes. Base matrix size: $m_b = 16$, $n_b = 48$. AWGN, BPSK.
Figure 3. FER performance of 19 $R = 3/4$ structured codes. Base matrix size: $m_b = 12$, $n_b = 48$. AWGN, BPSK.

Recommended Text Changes:

Add/Modify the following text to 802.16e_D5, adjusting the numbering as required:

<Insert the following text into section 8.4.9.2.5.1 Code Description after the sentence “H_b is partitioned into two sections, where H_{b1} corresponds to the systematic bits and H_{b2} corresponds to the parity-check bits, such that $H_b = [H_{b1}]_{n \times n_b} \cup [H_{b2}]_{n \times n_b}$.”>

Section H_{b2} is further partitioned into two sections, where vector h_b has odd weight, and H_{b2} has a dual-diagonal structure with matrix elements at row i, column j equal to 1 for $i=j$, 1 for $i=j+1$, and 0 elsewhere:

$$H_{b2} = [h_b \cup H_{b2}']$$

$$= \begin{bmatrix}
 h_b(0) & 1 \\
 h_b(1) & 1 & 0 \\
 \vdots & 1 & \ddots \\
 \vdots & \ddots & 1 \\
 h_b(m_b-1) & 0 & 1 & 1
\end{bmatrix}$$
The base matrix has \(h_0(0) = 1, h_0(m-1) = 1 \), and a third value \(h_0(j), 0 < j < (m_r-1) \) equal to 1. The base matrix structure avoids having multiple weight-1 columns in the expanded matrix.

In particular, the non-zero submatrices are circularly right shifted by a particular circular shift value. Each 1 in \(H_b' \) is assigned a shift size of 0, and is replaced by a \(z \times z \) identity matrix when expanding to \(H \). The two 1s located at the top and the bottom of \(h_b \) are assigned equal shift sizes, and the third 1 in the middle of \(h_b \) is given an unpaired shift size.

Model Matrix Set

The LDPC code design is based on a set of four basic model matrices, one for rate 1/2, one for rate 2/3, two for rate 3/4. The base matrix \(n_b \) equals to 48 for all four cases. Each basic model matrix is designed for a shift size \(z_0 \). A set of shift sizes \(\{p(i,j)\} \) is defined for the basic model matrix and used for other code sizes of the same rate. For other code sizes, the shift sizes are derived from the basic model matrix as follows [1]. For a code size corresponding to expansion factor \(z_f \), its shift sizes \(\{p(f,i,j)\} \) are derived from \(\{p(i,j)\} \) by scaling \(p(i,j) \) proportionally:

\[
p(f,i,j) = \begin{cases} p(i,j) & p(i,j) \leq 0 \\ \left\lfloor \frac{p(i,j)z_f}{z_0} \right\rfloor \alpha_f & p(i,j) > 0 \end{cases}
\]

Note that \(\alpha_f = z_0/z_f \) and \(\lfloor x \rfloor \) denotes rounding to the integer that differs from \(x \) the least. A rate 1/2 example is shown below on how to obtain a model matrix with \(z_f = 36 \) from the basic model matrix with \(z_0 = 48 \). The model matrices are tabulated below for each code rate. For brevity, the dual-diagonal portion corresponding to \(H_b' \) is not shown.

Rate 1/2:

The basic model matrix has size \(n_b = 48, m_b = 24 \) and an expansion factor \(z_0 = 48 \) (i.e., \(n = 48 \times 48 = 2304 \)). To achieve other code sizes, the expansion factor \(z_f \) can be any even integer between 12 and 48.

As an example, to achieve \(z_f = 36 \) (i.e., \(n = 48 \times 36 = 1728 \)), the shift sizes of the basic model matrix above is scaled and the resulting model matrix is shown below.

| 2 -1 -1 17 11 -1 -1 20 -1 12 -1 |
The base matrix has size $m_b=48$, $m_b=16$ and an expansion factor $z_0=48$ (i.e., $n=48*48=2304$). To achieve other code sizes, the expansion factor z_f can be any even integer between 12 and 48.

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

Rate 2/3:
The basic model matrix has size $n_b=48$, $m_b=16$ and an expansion factor $z_0=48$ (i.e., $n=48*48=2304$). To achieve other code sizes, the expansion factor z_f can be any even integer between 24 and 48.

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

Rate 3/4:
The base matrix has size $n_b=48$, $m_b=12$. The same base matrix is shared by two basic model matrices. The first basic model matrix has $z_0=48$ (i.e., $n=48*48=2304$), with expansion factor z_f being any even integer between 24 and 48 to achieve other code sizes. The first basic model matrix is shown below.

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

The second basic model matrix has $z_0=22$ (i.e., $n=48*22=1056$), with the expansion factor z_f being any even integer between 12 and 22 to achieve other code sizes. The second basic model matrix is shown below.

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

5
<Insert the following text at the end of section 8.4.9.2.5.2 LDPC encoding>

Direct Encoding

Encoding is the process of determining the parity sequence \(p \) given an information sequence \(s \). To encode, the information block \(s \) is divided into \(k_b = n_b - m_b \) groups of \(z \) bits. Let this grouped \(s \) be denoted \(u \),

\[
\begin{bmatrix}
 u(0) \\
 u(1) \\
 \vdots \\
 u(k_b - 1)
\end{bmatrix}
\]

where each element of \(u \) is a column vector as follows

\[
u(i) = [s_i \ s_{i+1} \ \cdots \ s_{(i+z)-1}]^T
\]

Using the model matrix \(H_{bm} \), the parity sequence \(p \) is determined in groups of \(z \). Let the grouped parity sequence \(p \) by denoted \(v \),

\[
\begin{bmatrix}
 v(0) \\
 v(1) \\
 \vdots \\
 v(m_b - 1)
\end{bmatrix}
\]

where each element of \(v \) is a column vector as follows

\[
v(i) = [p_i \ p_{i+1} \ \cdots \ p_{(i+z)-1}]^T
\]

Encoding proceeds in two steps, (a) initialization, which determines \(v(0) \), and (b) recursion, which determines \(v(i+1) \) from \(v(i) \), \(0 \leq i \leq m_b - 2 \).

An expression for \(v(0) \) can be derived by summing over the rows of \(H_{bm} \) to obtain

\[
P_{p(x,k_b)} v(0) = \sum_{j=0}^{k_b-1} \sum_{i=0}^{m_b-1} P_{p(i,j)} u(j)
\]

where \(x \), \(1 \leq x \leq m_b - 2 \), is the row index of \(h_{bm} \) where the entry is nonnegative and unpaired, and \(P_i \) represents the \(z \times z \) identity matrix circularly right shifted by size \(i \). Equation (1) is solved for \(v(0) \) by multiplying by

\[
P_{p(x,k_b)}^{-1}, \quad P_{p(x,k_b)}^{-1} = P_{z-p(x,k_b)}
\]

since \(p(x,k_b) \) represents a circular shift.

Considering the structure of \(H_{bm} \), the recursion can be derived as follows,

\[
v(1) = \sum_{j=0}^{k_b-1} P_{p(i,j)} u(j) + P_{p(i,k_b)} v(0), \quad i = 0,
\]

\[
v(i+1) = v(i) + \sum_{j=0}^{k_b-1} P_{p(i,j)} u(j) + P_{p(i,k_b)} v(0), \quad i = 1, \ldots, m_b - 2,
\]

where

\[
P_{z} = 0_{z \times z}.
\]

Thus all parity bits not in \(v(0) \) are determined by evaluating Equation (2) for \(0 \leq i \leq m_b - 2 \).

Equations (1) and (2) completely describe the encoding algorithm. These equations also have a straightforward interpretation in terms of standard digital logic architectures. Since the non-zero elements \(p(i,j) \) of \(H_{bm} \) represent circular shift sizes of a vector, all products of the form \(P_{p(i,j)} u(j) \) can be implemented by a size-\(z \) barrel shifter.