<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.16 Broadband Wireless Access Working Group [http://ieee802.org/16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Clarification on DL_MAP/UL_MAP Transmission</td>
</tr>
<tr>
<td>Date</td>
<td>2004-11-04</td>
</tr>
</tbody>
</table>
| **Submitted** | Peiying Zhu, Wen Tong, Jianglei Ma, Ming Jia,
 Dongsheng Yu, Hua Xu, Mo-Han Fong, Hang
 Zhang, Brian Johnson
 Nortel Networks
 3500 Carling Avenue
 Ottawa, ON. K2H 8E9
 CANADA
 Voice: (613)-765-8089
 Fax: (613)-765-7723
 pyzhu@nortelnetworks.com |
| **Re:** | Response to Sponsor Ballot call for comment |
| **Abstract** | Clarification on DL_MAP/UL_MAP transmission |
| **Purpose** | To incorporate the changes here proposed into the 802.16e D6 draft |
| **Notice** | This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion
 and is not binding on the contributing individual(s) or organization(s). The material in this
 document is subject to change in form and content after further study. The contributor(s)
 reserve(s) the right to add, amend or withdraw material contained herein. |
| **Release** | The contributor grants a free, irrevocable license to the IEEE to incorporate material contained
 in this contribution, and any modifications thereof, in the creation of an IEEE Standards
 publication; to copyright in the IEEE’s name any IEEE Standards publication even though it
 may include portions of this contribution; and at the IEEE’s sole discretion to permit others to
 reproduce in whole or in part the resulting IEEE Standards publication. The contributor also
 acknowledges and accepts that this contribution may be made public by IEEE 802.16. |
| **Patent** | The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures [http://ieee802.org/16/ipr/patents/policy.html], including the statement "IEEE standards may
 include the known use of patent(s), including patent applications, provided the IEEE receives
 assurance from the patent holder or applicant with respect to patents essential for compliance
 with both mandatory and optional portions of the standard." Early disclosure to the Working
 Group of patent information that might be relevant to the standard is essential to reduce the
 possibility for delays in the development process and increase the likelihood that the draft
 publication will be approved for publication. Please notify the Chair [mailto:chair@wirelessman.org]
 as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard
 being developed within the IEEE 802.16 Working Group. The Chair will disclose this
 notification via the IEEE 802.16 web site [http://ieee802.org/16/ipr/patents/notices]. |

Clarification on DL_MAP/UL_MAP Transmission

1 Introduction

According to the definition of the frame structure in 802.16e/D5, each frame in the downlink transmission begins with a preamble and the downlink transmissions period. The first four transmitted subchannels in the first data symbol of the downlink are used for FCH. Immediately following FCH is DL-MAP and UL-MAP. Although the OFDMA frame may include multiple zones, in which either PUSC or FUSC can be implemented, DL_MAP and UL_MAP are required to transmit in PUSC with CellID=0 in order for MSS to receive the control signal reliably. Moreover DL-MAP or UL-MAP allocation can not span over multiple zones. However, DL_MAP and UL_MAP are with variable length. For a BS has a shorter DL_MAP/UL_MAP, it needs to continue PUSC mode with CellID=0 in order to maintain PUSC SNR gain for other BS with longer DL_MAP/UL_MAP. In summary, to take advantage of PUSC permutation SRN gain, all BSs shall maintain PUSC transmission until all neighboring BSs finish the DL/MAP and UL/MAP transmission. However, due to the nature of variable length of DL_MAP/UL_MAP, there is no way for BS to know the proper time to switch to the other permutations. This effectively reduces usage of other permutation or zone usage.

The other related issues are that DL_MAP contains IE which is unicast to certain MSSs, who may have very high SNR. For these IE’s transmission, there is no need to use PUSC scheme with low modulation and low coding rate.

In this contribution, we propose to relax the constraint that DL_MAP or UL_MAP allocations must be transmitted in the same zone and add a parameter N_SYMBOL_DL_MAP to allow smooth switching from PUSC to FUSC without negative impact on DL_MAP detection.

2 Proposed solution

In the previous version 16e/D4, if DIUC = 14, it refers to the end of DL IE. This can be used to solve this problem. If we specify a maximum DL_MAP length to certain number of OFDMA symbols. If the DL_MAP requires can fit within the region, then the last IE will be end of MAP. If DL_MAP requires more resources than the specified region, the last IE will allocate a data region to transfer the remaining DL_MAP. This region may be in different permutation zone. The remaining IE may be transmitted with different burst profile specified in this last DL_MAP_IE().

3 Proposed Text Change

Modify the text on page 502 in section 8.4.4.2 line 50.

-------- Start text ---------

The OFDMA frame may include multiple zones (such as PUSC, FUSC, PUSC with all subchannels, optional FUSC, AMC and optional FUSC with all subchannels), the transition between zones is indicated in the DL-Map by the Zone_switch IE (see 8.4.5.3.4). No DL_MAP or UL_MAP allocations can span over multiple zones. Figure 219 depict OFDMA frame with multiple zones. The length of DL_MAP shall not exceed N_SYMBOL_DL_MAP OFDMA symbols. If the DL_MAP requires more resources than N_SYMBOL_DL_MAP OFDMA symbols, The last DL_MAP_IE() shall allocate a data region to carry the remaining DL_MAP message. The allocated region may be in different permutation zone. The remaining DL_MAP may be transmitted using the burst profile specified in this last DL_MAP_IE(). If the DL_MAP can be transmitted within the N_SYMBOL_DL_MAP OFDMA symbols, the last MAP_IE shall be the end of map IE. N_SYMBOL_DL_MAP can be one of these values: 2, 4, 6 or 8.

-------- End text ---------
Delete the changes in the section 8.4.5.3.1