Minimization of Handoff interruption time optimizing IP Address Assignment Procedure

Date Submitted: 2004-05-18

Source(s):
- Dongkie Lee, DongIl Moon, DongRyul Lee, JongKuk Ahn, Sungho Ha
 SK Telecom
 15F, Seoul Finance Center, 84, Taepyungpro 1 ga, Chung-gu, Seoul, 100-768, Korea
- Yong Chang
 Samsung Elec.
 416, Maetan-3dong, Youngtong-gu
 Suwon-si, Gyeonggi-do
 Korea
 Voice: +82-2-6323-3147
 Fax: +82-2-6323-4493

Re: Response to IEEE 802.16-04/19 (Recirculation Ballot #14a Announcement)

Abstract: To minimize the handoff interruption time, BS Group ID concept is introduced. BS Group ID is broadcasted by BS. Using the BGID concept, DHCP and Mobile IP procedure may be skipped.

Purpose: Discuss and Adopt as the enhanced handoff authentication procedure

Notice: This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures:
- The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures [http://ieee802.org/16/ipr/patents/policy.html], including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair [mailto:chair@wirelessman.org] as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site [http://ieee802.org/16/ipr/patents/notices].
1. Problem Statements
According to current 802.16 standard, post-handoff new IP address assignment procedure is required. And decision on IP Address renewal is, whether DHCP or Mobile IP, solely performed by MSS and IP address renewal requires at least 2 message exchange between target BS and MSS. During the IP address change/renewal, all the TCP/IP connections are suspended and it leads to handoff latency.

Table 1 DHCP message exchange

<table>
<thead>
<tr>
<th>MSS/Node</th>
<th>DHCP</th>
</tr>
</thead>
</table>
| Send DHCP request to broadcast address | --------------DHCP discover------------->
| Choose server | <---------------DHCP offer --------------|
| | --------------DHCP request-------------> |
| | <--------------DHCP response-------------|
| Set up IP parameters from DHCP response | |

Table 2 Mobile IP message exchange

<table>
<thead>
<tr>
<th>MSS/Node</th>
<th>Home Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent Solicitation</td>
<td>Agent Advertisement</td>
</tr>
<tr>
<td>Mobile IP Registration Request</td>
<td>Mobile IP Registration Reply</td>
</tr>
</tbody>
</table>

2. Overview of Proposed Solutions
To minimize the handoff interruption time due to IP address change, BGID(BS Group ID) concept is introduced. BS Group ID, which is shared by several BS and means same subnet area and area managed by the same Foreign Agent, is broadcasted by BS using MOB-NBR-ADV and MOB-PAG-ADV. During the stay in serving BS, MSS prepares to handoff and gets BGIDs of the neighbor BSs. When the MSS traverses to other BS, it’ll check the BSID in DL-MAP and gets BGID of that target BS stored in the MSS. MSS decides whether IP address renewal/FA address registration is required or not based on the previous BGID and current BGID. If these are same, IP address renewal for DHCP or registration for Mobile IP procedure
The BS’s are divided into logical groups called BS Group which is in the same subnet for DHCP case and/or is managed by the same Foreign Agent. A BS belongs to one and only one BS Group ID. If the operators would like to separate the DHCP subnet zone and FA administration zone, two different BS Group IDs are required. But for simplicity of OA&M administration, it is better to have DHCP subnet zone and FA administration zone same.

With BS Group ID concept, Layer 2 handoff, which does not necessitate IP address change or FA address change, rather than Layer 3 handoff is realized in the same BS Group zone.

3. Proposed Changes to IEEE 802.16e/D2

3. Definitions

[Add the following text to section 3:]

3.75 BS Group ID

The BS Group Identification is a unique number which identifies the coverage area managed by same subnet and Foreign Agent.

[Add the following text to section 4:]

4. Abbreviations and acronyms
BGID BS Group Identification

Table 92d © MOB-NBR-ADV Message Format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOB-NBR-ADV_Message_Format()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Message Type = 49</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Operator ID</td>
<td>24</td>
<td>Unique ID assigned to the operator</td>
</tr>
<tr>
<td>N_NEIGHBORS</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>For (j=0; j < N_NEIGHBORS; j++)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighbor BS-ID</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>BG ID</td>
<td>8</td>
<td>BS Group ID that the corresponding neighbor BS currently belongs to</td>
</tr>
<tr>
<td>Physical Frequency</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Configuration Change Count</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Hysteresis threshold</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>MAHO report period</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>TLV Encoded Neighbor information</td>
<td>Variable</td>
<td>TLV specific</td>
</tr>
</tbody>
</table>

BG ID – BS Group ID that the corresponding neighbor BS currently belongs to

Table 92k—BS Broadcast Paging (MOB_PAG-ADV) message format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOB_PAG-ADV_Message_Format()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Message Type = ??</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>BG ID</td>
<td>8</td>
<td>BS Group ID that the corresponding BS currently belongs to</td>
</tr>
<tr>
<td>Num_Paging Group IDs</td>
<td>8</td>
<td>Number of Paging Group IDs in this message</td>
</tr>
<tr>
<td>For (i=0; i<Num_Paging_Group_IDs; i++)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For (j=0; j < N_NEIGHBORS; j++)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paging Group ID</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>For (j=0; j<Num_MACs; j++)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSS MAC Address hash</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Action Code</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

BG ID – BS Group ID that the corresponding BS currently belongs to
6.3.20.4 Network entry/re-entry

Unless otherwise indicated in this section, MSS mobile network entry/re-entry is processed according to 6.4.9. For purposes of this process, MSS network re-entry and hand-over are synonymous.

MSS and Target BS shall conduct Ranging per 6.4.9.5 to begin network entry/re-entry except as MSS may take advantage of a non-contention based MSS Initial Ranging opportunity if present. If MSS RNG-REQ includes an Serving BS ID and Target BS had not previously received MSS information over the backbone (see section Backbone network HO procedures), then Target BS may make an MSS information request of Serving BS over the backbone network and Serving BS may respond. Regardless of having received MSS information from Serving BS, Target BS may request MSS information from another network management entity via the backbone network. Network re-entry proceeds per 6.4.9.5 except as may be shortened by Target BS possession of MSS information obtained from Serving BS over the backbone network.

If MSS RNG-REQ included an Serving BS ID, Target BS had previously received a backbone message (see section Backbone network HO procedures) containing MSS information and security context information, Target BS shall skip use the embedded TLV PKM-REQ information and the re-authorization process as defined in 7.2 and authenticates MSS using HMAC-Digest which is calculated with the AK of the serving BS. But Target BS may request MSS to re-authorize setting Authorization Required field in RNG-RSP.

If Target BS had previously received an backbone message (see section Backbone network HO procedures), Target BS may use the embedded TLV REG-REQ & DSA-REQ information to build and send an unsolicited REG-RSP message. The REG-RSP message may include New_CID, Old_CID and Connection_Info TLVs. Target BS may ignore only the first REG-REQ message received if it sends an unsolicited REG_RSP message. MSS is not required to send an REG-REQ if it receives an unsolicited REG-RSP prior to MSS attempt to send REG-REQ.

If MSS RNG-REQ included an Serving BS ID, MSS and Target BS may skip Time of day process.

If MSS RNG-REQ included an Serving BS ID, MSS may skip the MSS configuration file download procedure.

If MSS received a REG-RSP message that included New_CID, Old_CID, and Connection_Info TLVs, MSS and Target BS may skip the establish connections procedure.

Network entry/re-entry process completes with establishment of MSS Normal Operations.

Figure 141j-m

For a managed MSS, there is the possibility that entry at the new BS necessitates layer 3 protocol exchanges in order to retain IP connectivity. Such an MSS should take appropriate steps to detect and respond to the change of BS (eg. by performing Mobile IPv4 move detection and re-registration [RFC 3344], or Mobile IPv6 Binding Update [draft-ietf-mobileip-ipv6-24.txt]).

In order to minimize the handoff latency due to IP address renewal or Mobile IP re-registration, MSS may skip the DHCP procedure or Mobile IP registration procedure using BGID, BS Group ID, which is shared by several BS and means same subnet area and area managed by the same Foreign Agent, is broadcasted by BS using MOB-NBR-ADV and MOB-PAG-ADV. During the stay in serving BS, MSS prepares to handoff and gets BGIDs of the neighbor BSs. When the MSS traverses to target BS, it checks the BSID in DL-MAP and gets BGI of that target BS stored in the MSS. MSS decides whether IP address renewal/FA address registration is required or not based on the previous BGID and current BGID. If these are same, IP address renewal for DHCP or registration for Mobile IP procedure may be skipped by the MSS.