Project
IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

Title
Closed-Loop MIMO Precoding with CQICH Feedbacks

Date Submitted
2005-01-19

Source(s)
Jianzhong (Charlie) Zhang, Anthony Reid, Kiran Kuchi, Nico Van Waes, Victor Stolpman

Nokia
6000 Connection Drive
Irving, TX 75039

Voice: 972-374-0958, 678-576-2462, 972-894-5669, 972-374-0644, 972-894-6872,
Fax: 972-894-5937
charlie.zhang@nokia.com, nico.vanwaes@nokia.com,
tony.reid@nokia.com, kiran.kuchi@nokia.com
victor.stolpman@nokia.com

Re:
IEEE 802.16e D5a Draft

Abstract
Closed-loop MIMO Precoding to improve MIMO link performance with limited feedback

Purpose
To incorporate the changes here proposed into the 802.16e D4 Draft. Crossed-out indicates deleted text, underlined blue indicates new text change to the Standard, and underlined green indicates newly added text from the original contribution

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Closed-Loop MIMO Precoding with CQICH Feedbacks

Jianzhong (Charlie) Zhang, Tony Reid, Kiran Kuchi, Nico Van Waes, Victor Stolpman
Nokia

1. Background

In 8.4.8.3.6 of IEEE 802.16e/D5a, a MIMO precoding format is proposed. In this proposal, the output of the space-time encoder is weighted by a pre-coding weight matrix \(W \), before being transmitted from the actual transmit antennas. However, this approach (Feedback type 0001 in table 298a) requires periodic feedback of the actual complex elements of the weight matrix \(W \), and can be very demanding in terms of the feedback bandwidth (resources) needed to ensure the performance of the closed-loop system.

Here we propose a structured closed-loop MIMO precoding method that does not require the actual feedback of the weight matrix \(W \). Instead, for each transmit antenna size we construct a set of precoding matrices and let this set be known at both the BS and SS. Consequently, the SS only need to feedback to the BS the index to a precoding matrix within this set. The set of the matrices (or the codebook) can be constructed to achieve the desired performance and feedback bandwidth trade-off. Once the codebook is fixed, the number of feedback bits needed does not grow with the size of the matrix \(W \) itself, unlike in the existing approaches. We show that with the proposed precoding method, near-optimal precoding MIMO performance can be achieved with reasonably low amount of feedback bits.

2. MIMO Precoding with Limited Feedback

2.1 Precoding for a particular subcarrier

Consider an \(N_t \) transmit antenna, \(N_r \) receive antenna MIMO system. Let \(M_t \) be the number of spatially multiplexed data streams to be transmitted, and let the \(M_t \times 1 \) vector \(x \) denotes the signals carried on these data streams, the precoding matrix is a \(N_t \times M_t \) weight matrix that transform the \(x \) vector into a \(z \) vector, which is of size \(N_t \times 1 \):

\[
z = Wx
\]

(1)

note that the \(z \) vector is the actual signal being transmitted on the transmit antennas. The signal received at the receive antennas are given as:

\[
r = HWx + n
\]

(2)

where \(H \) is the channel matrix and \(n \) is the AWGN noise vector.

If we do not have constraints on the feedback bandwidth, the optimal choice of \(W \) is well-known to be the right singular vectors of \(H \) matrix. However, feeding back these singular vectors can be very expensive, especially when fast update is needed in a system. Here we propose a structured closed-loop MIMO precoding method that does not require the actual feedback of the weight matrix \(W \). Instead, for each transmit antenna size we construct a set of precoding matrices and let this set be known at both the BS and SS. We call this set of matrices as the “codebook” and denote it \(P = \{P_1, \ldots, P_L\} \). Here \(L = 2^q \) denotes the size of the codebook and \(q \) is the number of (feedback) bits needed to index the codebook. Note that each matrix in the codebook is a unitary matrix and the design of the codebook is shown to be a subspace-packing problem in a Grassmann manifold [1][2]. We propose to use the structured block-circulant codebook designed in [1], as it requires the least amount of storage at both the transmitter and receiver.
Example:
Consider a 4 Tx, 2 Rx MIMO system. To feedback the W matrix directly, we would need \(q = 4 \times 2 \times q_c \) bits, where \(q_c \) is the number of bits needed to represent a complex number. With a typical precision of 8 bits for every real number, we have \(q_c = 2 \times 8 = 16 \) and the total number of feedback bits \(q = 4 \times 2 \times 16 = 144 \) bits. In contrast, we state that a codebook of size \(L = 64 \) is enough to retain most of the performance gain from precoding in this 4 by 2 MIMO system, meaning that we need only \(q = \log_2 64 = 6 \) feedback bits instead of 144 bits required by the direct feedback method. This results in tremendous reduction in the number of feedback bits needed.

Once the codebook is specified for a MIMO system, the receiver observes a channel realization, selects the best precoding matrix (codeword) to be used at the moment, and feedback the index of the codeword to the transmitter. The basic idea of the limited feedback precoding MIMO system is illustrated in Figure 1 below. The performance of the precoded MIMO system is illustrated in Figure 2 for a 2 Tx, 1 Rx narrowband system.

2.1 Codebook Design

We will separate out discussion into two parts. First, we discuss the codebook designs for partial-spatial-rate cases where \(N_t > M_t \). We follow the design strategies in [1] for the partial-spatial rate case. Second, we show how to generate full-spatial-rate (\(N_t = M_t \)) codebooks from partial spatial rate codebooks.

2.1.1 Codebooks for Partial-Spatial-Rate Transmission

We adopt the design proposed in [1] where the cross-correlations of the codewords follow a block-circulant structure. In this design, a codebook is fully specified once the first codeword \(P_1 \) and a diagonal rotation matrix \(Q \) is provided. The other codewords in the codebook are given by:

\[
P_l = Q^l P_1, \quad \text{for } l = 2, \ldots, L,
\]

where \(Q \) is a diagonal matrix fully parameterized by an integer vector \(\mathbf{u} \triangleq [u_1, \ldots, u_{N_r}] \):

Fig. 1. Illustration of the \(N_t \) by \(N_r \) MIMO precoding, \(M_t \) data streams.
Furthermore, in this design, the first codeword \(P_1 \) is chosen to be a \(N_t \times M_t \) submatrix of the \(N_t \times N_t \) DFT matrix \(D_{N_t} \) whose \((m,n)\) element is specified as \((D_{N_t})_{m,n} = e^{j \frac{2\pi}{N_t} (m-1)(n-1)} \) where \(1 \leq m, n \leq N_t \). Denoting \(d_c \) as the \(c\)th column of the matrix \(D_{N_t} \), the first codeword is the collection of \(M_t \) columns parameterized by the set of column indices \(c \triangleq [c_1, \cdots, c_{M_t}] \), i.e., \(P_1 = [d_{c_1}, \cdots, d_{c_{M_t}}] \). In Table 1, we tabulate the choices of \(u \triangleq [u_1, \cdots, u_{N_t}] \) and \(c \triangleq [c_1, \cdots, c_{M_t}] \) for different transmitter antenna num and \(N_t \), and spatially multiplexed data stream number \(M_t \). Note that the choice of \(L \) is the result of trading off performance with number of feedback bits.

<table>
<thead>
<tr>
<th>(N_t)</th>
<th>(M_t)</th>
<th>(L)</th>
<th>(c)</th>
<th>(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{(# of Tx Antennas)})</td>
<td>(\text{(# of data streams)})</td>
<td>(\text{L/(log}_2\text{L)})</td>
<td>(\text{Column indices})</td>
<td>(\text{Rotation Vector})</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>8 / (3)</td>
<td>[1]</td>
<td>[1, 0]</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>32 / (5)</td>
<td>[1]</td>
<td>[1, 26, 28]</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>32 / (5)</td>
<td>[1, 2]</td>
<td>[1, 26, 28]</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>64 / (6)</td>
<td>[1]</td>
<td>[1, 8, 61, 45]</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>64 / (6)</td>
<td>[0, 1]</td>
<td>[1, 7, 52, 56]</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>64 / (6)</td>
<td>[0, 2, 3]</td>
<td>[1, 8, 61, 45]</td>
</tr>
</tbody>
</table>

Table 1. Codebook design for the partial-spatial rate cases (\(N_t>M_t \))

2.1.1.1 Codebooks for Partial-Spatial-Rate Transmission

In this Section, we propose a full-rate solution for the MIMO OFDMA precoding problem of interest by “completing” partial-rate codebooks given in Table 1. To proceed, let us use \(M_t = N_t = 4 \) as an example to illustrate how the “completing” process works. We start with an underlying \(N_t = 4, M_t =3 \) codebook as specified by the last row in Table 1: \(\Pi(4,3) \triangleq \{P_1, \cdots, P_{L}\} \) where \(L=64 \) and \(\Pi(4,3) \) denotes the codebook with \(N_t=4 \) and \(M_t =3 \). Note that in this codebook, each codeword is a 4 by 3 unitary matrix. For a given codeword \(P_j \), we can find the basis vectors of the null space of \(P_j \) in the four-dimensional complex vector space. Denoting \(P_j^{\perp} \) as the basis vectors associated with the null space of \(P_j \), the codebook for the full-rate \(M_t = N_t = 4 \) solution is given by:

\[
\Pi(4,4) \triangleq \{ [P_j, P_j^{\perp}], \cdots, [P_{L}, P_{L}^{\perp}] \} \triangleq \{ \tilde{P}_1, \cdots, \tilde{P}_L \}
\]

where each full-rate codeword is a 4 by 4 unitary matrix defined by \(\tilde{P}_j \triangleq [P_j, P_j^{\perp}] \).

While the “completing” process is not unique, the advantage of the proposed codebook is that the number of required feedback bits
remains the same as the underlying partial-rate codebook, since the null-space basis vectors of each partial-rate codeword can be obtained at the transmitter without additional feedback.

2.1.2 Codeword Selection at the receiver

2.1.2.1 Codeword selection for Partial-Spatial-Rate Transmission

After a codebook is chosen, the receiver observes a channel realization and makes a decision on the optimal codeword (precoding matrix) to be used at the transmitter. The index of the optimal codeword is then sent back through the designated feedback channel to the transmitter. We note that several receiver structures can be used in this MIMO system, including maximum likelihood (ML) and linear Minimum Mean Square Error (LMMSE) receivers. For the MMSE receiver, the MSE at the output of the receiver is a function of the precoding matrix \(\mathbf{W} = \mathbf{P}_I \) used at the transmitter:

\[
MSE(\mathbf{P}_I) = \frac{E_s}{N_o} tr \left(\left(\mathbf{I}_{M_t} + \frac{E_s}{N_o N_o} \mathbf{P}_I^H \mathbf{H}^H \mathbf{H} \mathbf{P}_I \right)^{-1} \right),
\]

and the receiver does the following simple optimization to select the index of the precoding matrix to be conveyed to the transmitter:

\[
l_{opt} = \arg \min_{l=1,2,\ldots,L} MSE(\mathbf{P}_l).
\]

2.1.2.1 Codeword selection for Full-Spatial-Rate Transmission

If strong error correction coding is present, we simply try to align the underlying partial-rate codeword with the dominant singular vectors of the matrix. Let \(\mathbf{H} = \mathbf{S} \mathbf{U} \mathbf{V} \) denote the SVD of the channel matrix and write the right singular matrix as \(\mathbf{\hat{V}} = [\mathbf{V}, \mathbf{V}^\perp] \), similar to what we did in relating a full-spatial-rate codeword with its underlying partial-rate codeword. Note that here the singular values are organized in descending order in the matrix \(\mathbf{U} \). With this assumption we know that \(\mathbf{V} \) includes all the dominant right singular vectors and \(\mathbf{V}^\perp \) includes the least significant ones. Furthermore, the selection is a simple minimization of the Chordal distance between the significant singular vectors \(\mathbf{V} \) and the underlying partial-rate codewords:

\[
\mathbf{P}_{opt} = \left[\mathbf{P}_{opt}, \mathbf{P}_{opt}^\perp \right] \quad \text{while}
\]

\[
\mathbf{P}_{opt} = \arg \min_{p_{opt}} d_{cdl}(\mathbf{V}, \mathbf{P}_l)
\]

where \(d_{cdl}(\mathbf{A}, \mathbf{B}) \equiv N_c - \text{trace}(\mathbf{A}^H \mathbf{B}^H \mathbf{A}^H \mathbf{B}) \) is the Chordal distance between matrix \(\mathbf{A} \) and \(\mathbf{B} \) where the number of columns of each matrix is denoted by \(N_c \).

If the error correction is weak in the system, the codeword selection criteria is slightly different. At the output of an LMMSE or LMMSE/DFE receiver, the effective SNR of each spatial stream can be easily obtained once the biased introduced by LMMSE algorithm is removed from the signal at the filter output. Let us denote \(\gamma_k(\mathbf{P}_l) \), \(k = 1, \ldots, M_t \), as the SNR of the \(k \)th spatial stream at the LMMSE or LMMSE/DFE filter output, assuming that the \(l \)th codeword \(\mathbf{P}_l \) is applied at the transmitter. The receiver then tries to maximize the minimum of SNRs across all spatial streams by:
\[\tilde{P}_{\text{opt}} = \arg\max_{\tilde{P}} \min_{l=1,...,L} \gamma_k(\tilde{P}) \]

Alternatively, if we denote \(\xi_k(\tilde{P}) \), \(k = 1,\ldots,M_t \) as the post-filtering MSE of the kth spatial stream, assuming that the lth codeword is applied at the transmitter, we can solve a mini-max problem that will reach the same selection as prescribed by (8):

\[\tilde{P}_{\text{opt}} = \arg\min_{\tilde{P}} \max_{l=1,...,L} \xi_k(\tilde{P}) \]

2.2 Subspace Tracking in Multi-carrier OFDMA MIMO system

For a single carrier system, we have shown that by utilizing a codebook of unitary matrices, the proposed limited feedback MIMO method achieves near-optimal beamforming performance with very few feedback bits. The extension of this method to a MIMO OFDMA system with N subcarriers in a subchannel is straightforward, once we decide that the same codebook \(P = \{P_1,\ldots,P_L\} \) can be used for all N subcarriers. In a direct extension of the precoding to OFDMA, the receiver selects the optimal codeword for each subcarrier in the subchannel of a particular SS (subscriber station), and use \(q = \log_2 L \) bits to feedback the optimal codeword for that subcarrier. We denote this scheme (subcarrier) independent precoding scheme, in order to differentiate from a so-called subspace-tracking precoding scheme we introduce later. In the independent precoding scheme, we need a total of \(Nq \) bits to feedback the optimal codeword choices for the SS with N subcarrier.

Example:

Consider the same 4 Tx, 2 Rx MIMO system, but with \(N = 108 \) out of 128 subcarriers assigned. We again use a codebook of size \(L = 32 \), meaning that we need \(q = \log_2 65 = 6 \) feedback bits for each subcarrier and a total of \(108 \times 6 = 648 \) bits for the whole system. The amount of feedback bits required becomes large when N increases.

To further reduce the number of feedback bits required for an SS with a large number of subcarriers, we proposed a subspace tracking precoding scheme where the choices of precoding matrices are dependent across the subcarriers. The proposed approach exploits the statistical correlation of the neighbouring subcarrier channels in an OFDMA system. The idea originates from the fact that due to the statistical correlation between two neighbouring subcarriers, it is highly likely that the two desired precoding matrices reside within a small neighbourhood in the high-dimensional Grassmann manifold. Consequently, we devise a mechanism for recursive selection of precoding matrices, which we term subcarrier-tracking algorithm here. In this tracking algorithm, we start with the first subcarrier and use the full precision (\(q = \log_2 L \) bits) to select one of the best precoding matrix, \(\tilde{W}_1 \), out of \(2^q \) possibilities.

Observing that the best precoding matrix for the second subcarrier, \(\tilde{W}_2 \), lives in the small neighbourhood of \(\tilde{W}_1 \), we are able to narrow our search. Assuming that the number of matrices in this small neighbourhood to be \(2^{q'} \) (\(q' < q \)), we effectively reduce the number of feedback bits needed for the second subcarrier to \(q' \). Recursively repeating this process to cover all N subcarriers involved, and we end up with a total requirement of \(q' + (N-1)q' \) feedback bits, which is much less than the \(N \times q \) bits necessary for the non-tracking approach. The search for \(\tilde{W}_2 \) in the neighbourhood of \(\tilde{W}_1 \) is illustrated in Figure 2.
We summarize the *subspace tracking precoding scheme* as follows. Note here we assume that the codebook is the same across all the subcarriers. The codebook is $P = \{P_1, \ldots, P_L\}$, where $L = 2^q$ is the codebook size and q is the feedback bits needed for the codeword selection from the whole codebook. Meanwhile, we used an additional parameter called step size for flexibility.

1. For the first subcarrier, use the full q bits to select the precoding matrix W_1 out of the L codewords.
2. Defining a step size K such that $K|N$ (K is a factor of N), we will skip the subcarriers $2, \ldots, K$ and move to subcarrier $K+1$. The search for W_{K+1} will be limited in the neighbourhood of W_1 defined by the set $P_{S_i} = \{P_i, \text{ s.t. } d(P_i, W_1) \leq \delta_1\}$, where $d(P_i, W_1) \triangleq M_i = \left\| P_i W_1 \right\|_F$ is the chordal distance between P_i and W_1 in the Grassmann manifold, and $\left\| \cdot \right\|_F$ denotes Frobenius norm. The parameter δ_1 is selected to chosen such that the size of the set $P_{S_i} \leq 2^{q'}$, where q' denotes the number of feedback bits needed for the $K+1$ th subcarrier.
3. Repeat step 2 for subcarriers $2K+1, 3K+1, \ldots, (N/K-1)K+1$.

According to the above subspace tracking precoding scheme, the total number of bits required for all N subcarriers is $q + \left(\frac{N}{K}-1\right)q'$ bits. The parameters K and q' are selected to achieve the best performance/feedback bandwidth tradeoff. In the Figure 6 below, we demonstrate the efficacy of the proposed subspace algorithm. To support the 384 data carriers, we have a 50 bits solution and a 98 bits solution. For the 50 bit solution, the initial codebook size is $q=4$ bits and the tracking requires $q'=2$ bits everytime, therefore $50 = 4 + (384/16-1)*2$ where $K=16$ is the frequency sampling rate. On the other hand, $q=6$ and $q'=4$ for the 98 bits solution, we have $98 = 6 + (384/16-1)*4$ with the same $K=16$ frequency sampling rate.

Full-spatial rate case. The discussion above has assumed a partial-spatial rate system. However, it is straightforward to extend this tracking algorithm to the full-rate case by exploiting the structure of the full-rate codebook. In fact, since each codeword in the full-
rate case $\tilde{P}_i \triangleq [P_i, P_i^\perp]$ is uniquely determined by the underlying partial-rate codeword P_i, it is easy to see that the tracking of a full-rate codeword \tilde{P}_i reduces to the tracking of the underlying codeword P_i across different sub-carriers.

2.3 Subspace-Tracking for Continuous Transmissions

The continuous transmission arises in some applications such as video/audio streaming, where BS transmit information on a fixed set of sub-carriers for an extended amount of time (tens of frames). The subspace-tracking method discussed above in section 2.3 can be directly applied to this type of transmission to reduce the amount of feedback needed after an initial setup of MIMO precoding. For example, if one uses a 6-bit codebook for a 4x2 antenna configuration, then $q=6$ bits are needed to do the initial setup for a given subcarrier. After that, one only needs to feedback $q'=3$ in the subsequent frames to track the codewords in the nearest neighborhood that includes 8 codewords. For example, if one sends $N=100$ frames continuously, without subspace tracking he would need a total $100\times6 = 600$ bits over the lifespan of the transmission to support MIMO precoding; whereas with subspace tracking only a total of $6+(100-1)\times3 = 303$ bits are needed without significant loss of performance. Simulation results to be added in the next revision.

3. Simulation Results

Several plots are provided here to verify the performance of the algorithms proposed.

Fig 3. Goodput for 4Tx, 1Rx, 1 Spatial stream. One AMC Band with 32 data subcarriers used. Feedback delay is two 5 ms frames. Number of feedback CQICH required is one. Up to 7 dB gain over open-loop Rate 1, 4Tx STC with matrix A in the Spec.
Fig. 4. Goodput for 4Tx, 2Rx, 2 Spatial stream. One AMC Band with 32 data subcarriers used. Feedback delay is two 5 ms frames. Number of feedback CQICH required is one. Up to 7.5 dB gain over open-loop Rate 2, 4Tx STC with matrix B in the Spec.

Fig. 5. Simulation results for 2x2 MIMO OFDMA Band AMC mode with 32 data sub-carriers, QPSK, CC with rate $\frac{1}{2}$, 3 bits feedback, Ped B 3km/h, 2 frame feedback delay, spatial correlation coefficient 0.2. About one dB gain is achieved compared with the open loop case (Matrix B for 2Tx STC in the spec)
Subspace tracking for broadband case. 384 subcarriers simulated. For the 50 bit solution, $q=4$, $q'=2$ and $K=16$ is the frequency sampling rate: $50 = 4 + (384/16-1)*2$. For the 98 bit solution, $q=6$, $q'=4$ and $K=16$ gives $98 = 6 + (384/16-1)*4$. The solution is clearly scalable depending on the available CQICH resources.

4. Specific Text Changes

[Modify the following Table 298a in section 8.4.5.3.12.1]

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size (bits)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQICH_Enhanced_Alloc_IE()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended DIUC</td>
<td>4</td>
<td>0x09</td>
</tr>
<tr>
<td>Length</td>
<td>4</td>
<td>Length in bytes of following fields</td>
</tr>
<tr>
<td>CQICH_ID</td>
<td>variable</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Period (=p)</td>
<td>2</td>
<td>A CQI feedback is transmitted on the CQICH every 2^p frames</td>
</tr>
<tr>
<td>Frame offset</td>
<td>3</td>
<td>The MSS starts reporting at the frame of which the number has the same 3 LSB as the specified frame offset. If the current frame is specified, the MSS should start reporting in 8 frames</td>
</tr>
<tr>
<td>Duration (=d)</td>
<td>3</td>
<td>A CQI feedback is transmitted on the CQI channels indexed by the CQICH_ID for 10×2^d frames. If $d=0$, the CQICH is deallocated. If $d=111$, the MSS should report until the BS command for the MSS to stop.</td>
</tr>
<tr>
<td>N_T actual BS antennas</td>
<td>3</td>
<td>$001 = \text{Reserved}$ $010 = 2 \text{ actual antennas}$ $011 = 3 \text{ actual antennas}$ $100 = 4 \text{ actual antennas}$ $101 = 5 \text{ actual antennas}$ $110 = 6 \text{ actual antennas}$ $111 = 7 \text{ actual antennas}$ $000 = 8 \text{ actual antennas}$</td>
</tr>
<tr>
<td>Feedback_type</td>
<td>4</td>
<td>$0000 = \text{Open loop precoding. Pilots in burst to be precoded with } W, \text{ SS to rely only on pilots in burst for channel estimation.}$ $0001 = \text{Complex weight of specific element of } W$ $0010 = \text{Fast DL measurement}$ $0011 = \text{Layer specific channel strengths}$ $0100 = \text{MIMO mode and permutation zone feedback}$ $0101 = \text{Feedback of subset of antennas to use.}$ $0110 = \text{Feedback of the precoding matrix index. Where the set of precoding matrices is a pre-defined matrix codebook known at both the transmitter and receiver.}$ $0111 \sim 1111 \text{ reserved}$</td>
</tr>
<tr>
<td>CQICH_Num</td>
<td>4</td>
<td>Number of CQICHS assigned to this CQICH_ID is $(\text{CQICH_Num } + 1)$</td>
</tr>
<tr>
<td>for (i=0;i<CQICH_Num;i++) {</td>
<td>}</td>
<td></td>
</tr>
<tr>
<td>Allocation index</td>
<td>6</td>
<td>Index to the fast feedback channel region marked by UIUC=0</td>
</tr>
</tbody>
</table>
if (Feedback_type != 0100) {
 MIMO_permutation_feedback_cycle }

2 00 = No MIMO and permutation mode feedback
 01 = the MIMO and permutation mode indication shall be
 transmitted on the CQICH indexed by the CQICH_ID every 4
 frames. The first indication is sent on the 8th CQICH frame.
 10 = the MIMO mode and permutation mode indication shall be
 transmitted on the CQICH indexed by the CQICH_ID every 8
 frames. The first indication is sent on the 8th CQICH frame.
 11 = the MIMO mode and permutation mode indication shall be
 transmitted on the CQICH indexed by the CQICH_ID every 16
 frames. The first indication is sent on the 16th CQICH frame.

if (Feedback_type != 0110) {
 Feedback cycle for index of the
 precoding matrix }

2 00 = Feed back one precoding matrix index every frame.
 00 = Feed back one precoding matrix index every 4th
 frame.
 00 = Feed back one precoding matrix index every 8th
 frame.
 00 = Feed back one precoding matrix index every 16th
 frame.

Padding variable The padding bits are used to ensure the IE size is integer number
of bytes.

[Add the following text into section 8.4.8.3.7]

The space time coding output can be weighted by a matrix before mapping onto transmit antennas:

\[z = Wx \]

where \(x \) is a vector with the output from the space-time coding (per-subcarrier), \(M \) is the number of antennas at the output of the space-time coding scheme. The matrix \(W \) is an weighting matrix where the quantity \(N_t \) is the number of actual transmit antennas. The vector \(z \) contains the signals after weighting for the different actual antennas. The labeling of the elements in the weighting matrix \(W \) is performed in accordance with the example of \(W \) given below for the case of 4 actual antennas and 2 space-time coding output antennas:

\[
W = \begin{bmatrix}
W_{11} & W_{12} \\
W_{21} & W_{22} \\
W_{31} & W_{32} \\
W_{41} & W_{42}
\end{bmatrix}
\]

The space-time weighting matrix \(W \) belongs to a codebook \(P = \{ P_1, \ldots, P_L \} \), the codebook is fully specified once the first codeword \(P_1 \) and a diagonal rotation matrix \(Q \) is provided. The other codewords in the codebook are given by:

\[
P_l = QP_1, \quad \text{for } l = 2, \ldots, L
\]

where \(Q \) is a diagonal matrix fully parameterized by an integer vector \(u \triangleq [u_1, \ldots, u_{N_t}] \).
Furthermore, in this design, the first codeword P_1 is chosen to be a $N_t \times M_t$ submatrix of the $N_t \times N_t$ DFT matrix D_{N_t} whose (m,n) element is specified as $(D_{N_t})_{m,n} = e^{j2\pi (m-1)(n-1)}$ where $1 \leq m, n \leq N_t$. Denoting d_c as the c^{th} column of the matrix D_{N_t}, the first codeword is the collection of M_t columns parameterized by the set of column indices $c = [c_1, \cdots , c_{M_t}]$, i.e., $P_1 = [d_{c_1}, \cdots , d_{c_{M_t}}]$.

In Table 1, the choices of $u = [u_1, \cdots , u_{N_t}]$ and $c = [c_1, \cdots , c_{M_t}]$ are tabulated for different transmitter antenna numb and N_t, and spatially multiplexed data stream number M_t. Note that the choice of L is the result of trading off performance with number of feedback bits.

<table>
<thead>
<tr>
<th>N_t (# of Tx Antennas)</th>
<th>M_t (# of data streams)</th>
<th>$L_{/}(q=\log_2 L)$ Codebook size/ (feedback bits)</th>
<th>$c = [c_1, \cdots , c_{M_t}]$ Column indices</th>
<th>$u = [u_1, \cdots , u_{N_t}]$ Rotation Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>8/ (3)</td>
<td>[1]</td>
<td>[1, 0]</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>32/ (5)</td>
<td>[1]</td>
<td>[1, 26, 28]</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>32/ (5)</td>
<td>[1]</td>
<td>[1, 26, 28]</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>64/ (6)</td>
<td>[1]</td>
<td>[1, 8, 61, 45]</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>64/ (6)</td>
<td>[0, 1]</td>
<td>[1, 7, 52, 56]</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>64/ (6)</td>
<td>[0, 2, 3]</td>
<td>[1, 8, 61, 45]</td>
</tr>
</tbody>
</table>

For the full-spatial rate case, denoting P_t^\perp as the basis vectors associated with the null space of P_t, the codebook for the full-rate $M_t = N_t$ solution is given by $\Pi(N_t, M_t)$ denotes the codebook with N_t Tx antennas and M_t spatial streams):

$$\Pi(N_t, M_t) \triangleq \{[P_1, P_t^\perp], \cdots , [P_L, P_t^\perp] \} \triangleq \{\tilde{P}_1, \cdots , \tilde{P}_L \}$$

After a codebook is chosen, the receiver observes a channel realization and makes a decision on the optimal codeword (precoding matrix) to be used at the transmitter. The index of the optimal codeword is then sent back through the designated feedback channel to the transmitter. We note that several receiver structures can be used in this MIMO system, including maximum likelihood (ML) and linear Minimum Mean Square Error (LMMSE) receivers. For the partial-spatial rate case, the MSE at the output of the receiver is a function of the precoding matrix $W = P_t$ used at the transmitter.
$$MSE(P_i) = \frac{E_s}{N_o} \cdot \text{tr} \left(I_{M_i} + \frac{E_s}{N_o} P_i^H H P_i \right)^{-1}$$

and the receiver does the following simple optimisation to select the index of the precoding matrix to be conveyed to the transmitter:

$$l^{\text{opt}} = \arg \min_{l \in \{1, 2, \ldots, L\}} MSE(P_i)$$

For full-spatial-rate system with strong error correction in the system (rate $\frac{1}{2}$), the selection is a simple minimization of the Chordal distance between the significant singular vectors V and the underlying partial-rate codewords:

$$P_{\text{opt}} = \arg \min_{P, l} d^2_{\text{cd}}(V, P_i)$$

where $d^2_{\text{cd}}(A, B) \triangleq N_c - \text{trace}((A^H B)^H A^H B)$ is the Chordal distance between matrix A and B where the number of columns of each matrix is denoted by N_c.

For full-spatial-rate system with weak error correction in the system (rate $\frac{2}{3}$ or $\frac{3}{4}$), let us denote $(\gamma_k(P_i), \kappa = 1, \ldots, M_t)$ as the SNR of the kth spatial stream at the LMMSE or LMMSE/DFE filter output, assuming that the lth codeword P_i is applied at the transmitter. The receiver then tries to maximize the minimum of SNRs across all spatial streams by:

$$P_{\text{opt}} = \arg \max_{P,l} \min_{\kappa = 1, \ldots, M_t} \gamma_k(P_i)$$

Alternatively, if we denotes $(\xi_k(P_i), \kappa = 1, \ldots, M_t)$ as the post-filtering MSE of the kth spatial stream, assuming that the lth codeword P_i is applied at the transmitter, we can solve a mini-max problem that will reach the same selection as prescribed by (8):

$$P_{\text{opt}} = \arg \min_{P,l} \max_{\kappa = 1, \ldots, M_t} \xi_k(P_i)$$

In the broadband (FUSC or PUSC mode) the feedback bits of each subcarriers are obtained by:

1. For the first subcarrier, use the full q bits to select the precoding matrix W_1 out of the L codewords.
2. Defining a step size K such that $K|N$ (K is a factor of N), we will skip the subcarriers $2, \ldots, K$ and move to subcarrier $K+1$. The search for W_{K+1} will be limited in the neighbourhood of W_1 defined by the set

$$P_{S_i} = \{ P_i, \text{ s.t. } d(P_i, W_i) \leq \delta \}$$

where $d(P_i, W_i) \triangleq M_t - \left\| P_i^H W_i \right\|_F^2$ is the chordal distance between P_i and W_i in the Grassmann manifold, and $\left\| \cdot \right\|_F$ denotes Frobenius norm. The parameter δ is selected to chosen such that the size of the set $\left| P_{S_i} \right| \leq 2^{q'}$, where q' denotes the number of feedback bits needed for the $K+1$ th subcarrier.
3. Repeat step 2 for subcarriers 2K+1, 3K+1,… (N/K-1)K+1.

4 References