<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Enhanced MOB_HO_IND message</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>2005-01-24</td>
</tr>
<tr>
<td>Source(s)</td>
<td>Jianjun(Alen) Wu, John Lee, Duke Dang</td>
</tr>
<tr>
<td></td>
<td>HUAWEI</td>
</tr>
<tr>
<td></td>
<td>No.98, Lane91, Eshan Road, Pudong, Shanghai, China</td>
</tr>
<tr>
<td></td>
<td>Pudong Lujiazui Software Park, 200127 P.R. China</td>
</tr>
<tr>
<td>Re:</td>
<td>Contribution on comments to IEEE P802.16e/D5a</td>
</tr>
<tr>
<td>Abstract</td>
<td>Enhanced MOB_HO_IND message</td>
</tr>
<tr>
<td>Purpose</td>
<td>Adoption</td>
</tr>
<tr>
<td>Notice</td>
<td>This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.</td>
</tr>
<tr>
<td>Release</td>
<td>The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.</td>
</tr>
<tr>
<td>Patent Policy and Procedures</td>
<td>The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:chair@wirelessman.org as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices.</td>
</tr>
</tbody>
</table>
Enhanced MOB_HO_IND message
Jianjun (Alen) Wu, John Lee, Duke Dang
HUAWEI

1. Introduction

In the current IEEE P802.16e/D5a, after handover decision, the MSS sends MOB_HO_IND message. The function of the MOB_HO_IND message is as following:

a) MSS sends MOB_HO_IND with option HO_IND_type = 00 indicating commitment to HO and intent to release the serving BS, the MSS is released from any obligation to monitor serving BS DL traffic.

b) After an MSS or BS has initiated an HO using MOB_MSSHO/BSHO_REQ message, the MSS may cancel HO at any time. The cancellation shall be made through transmission of a MOB_HO-IND message with the HO cancel option (HO_IND_type=01).

c) If the MSS signals rejection of serving BS instruction to HO, the MSS can set value of HO_IND_type=10 in the MOB_HO_IND. the BS may reconfigure the target BS list and retransmit MOB_BSHO_RSP message including a new target BS list.

In order to shorten the network re-entry process during handover, the serving BS may send messages to the recommended BSs after receiving the MOB_HO_IND message in order to make the BS to reserve the fast ranging resource for the MSS. And in order not to waste the reserved resource, the Serving BS should tell the Target BS the estimated HO start time. Although the MOB_MSSHO_REQ and MOB_BSHO_RSP message include the estimated HO start time, the MSS maybe delay or advance the HO start time for some cases. The estimated HO start time is in units of frame, so the Target BS can reserve UL resource at actual time, which can avoid a backbone message of Serving BS for notifying the Target BS release the meaningless reserved UL resource.

In this contribution, we propose to enhance the MOB_HO_IND message in order to avoid the waste of the reserved resource.

2. Proposed Text Changes

Modify the text of Page 106 Line35 in IEEE P802.16e/D5a in section 6.3.2.3.54 shown as indicated.

6.3.2.3.54 HO Indication (MOB-HO-IND) message

An MSS shall transmit a MOB_HO-IND message for final indication that it is about to perform a HO. When the MSS cancels or rejects the HO, the MSS shall transmit a MOB_HO-IND message with appropriate HO_IND type field. The message shall be transmitted on the basic CID.

Table 106m—MOB-HO-IND Message Format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOB_HO-IND_Message_Format()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{</td>
<td>8 bits</td>
<td>Reserved; shall be set to zero</td>
</tr>
<tr>
<td>Management Message Type = 59</td>
<td>6 bits</td>
<td></td>
</tr>
<tr>
<td>reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1
Mode 2 bits

if (Mode == 0b00)
{
 HO_IND_type 2 bits
 if (HO_IND_type == 0b00)
 {
 Target_BS_ID 48 bits
 Estimated HO start 8 bits
 }
}

if (Mode == 0b01)
{
 SHOFBSS_IND_Type 2 bits
 if (SHOFBSS_IND_Type == 0b00)
 {
 Anchor BS ID 3 bits
 Action time 8 bits
 }
}

if (Mode == 0b10)
{
 SHOFBSS_IND_Type 2 bits
 if (SHOFBSS_IND_Type == 0b00)
 {
 Active Set Included Indicator 1 bit
 if (Active Set Included Indicator==1)
 {
 Anchor BS ID 3 bits
 N_BSs 3 bits
 }
 }
}
For (j=0 ; j<N_BSs ; j++)
{
 Temp BS-ID 8 bits Active Set member ID assigned
}

Action time 8 bits Action time when the Anchor BS shall be updated

Preamble index/ Subchannel Index 8 bits For the SCa and OFDMA PHY this parameter defines the PHY specific preamble for the target BS. For the OFDM PHY the 5 LSB contain the active DL subchannel index for the target BS. The 3 MSB shall be Reserved and set to ‘0b000’.

Padding 0 or 4 bits Shall be set to zero.

HMAC Tuple 21 bytes See 11.4.11

An MSS shall generate MOB-HO-IND messages in the format shown in Table 106m. The following parameters shall be included in the message:

Target BS ID
Same as the Base Station ID parameter in the DL-MAP message of Target BS. This may include the Serving BS.

Preamble Index/ Subchannel Index
For the SCa and OFDMA PHY this parameter defines the PHY specific preamble for the target BS. For the OFDM PHY the 5 LSB contain the DL subchannel index (as defined in Table 211) used in the target BS sector. The 3 MSB shall be Reserved and set to ‘0b000’.

Estimated HO start
Estimated number of frames starting from the frame following the reception of the MOB_HO-IND message until the HO may take place. A value of zero in this parameter signifies that this parameter should be ignored.

If Privacy is enabled, the MOB-HO-IND message shall include the following TLV value,

HMAC Tuple (see 11.1.2)
The HMAC Tuple Attribute contains a keyed Message digest (to guarantee the origin and integrity of the message).