<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Clarification on UL CQICH SNR feedback for MIMO systems</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>2005-04-28</td>
</tr>
<tr>
<td>Source(s)</td>
<td>Jianzhong (Charlie) Zhang, Anthony Reid, Kiran Kuchi, Heikki Berg, Nico Van Waes</td>
</tr>
<tr>
<td></td>
<td>Voice: 972-374-0958</td>
</tr>
<tr>
<td></td>
<td>Fax: 972-894-5937</td>
</tr>
<tr>
<td></td>
<td>charlie.zhang@nokia.com</td>
</tr>
<tr>
<td>Source(s)</td>
<td>Nokia Research Center</td>
</tr>
<tr>
<td></td>
<td>6000 Connection Drive</td>
</tr>
<tr>
<td></td>
<td>Irving, TX 75039</td>
</tr>
<tr>
<td>Re:</td>
<td>IEEE 802.16e D5 Draft</td>
</tr>
<tr>
<td>Abstract</td>
<td>Proposes an improved channel quality indicator for vertically encoded MIMO systems</td>
</tr>
<tr>
<td>Purpose</td>
<td>To incorporate the changes proposed here into the 802.16e D6 Draft.</td>
</tr>
<tr>
<td>Notice</td>
<td>This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.</td>
</tr>
<tr>
<td>Release</td>
<td>The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.</td>
</tr>
<tr>
<td>Patent Policy and Procedures</td>
<td>The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:chair@wirelessman.org as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices.</td>
</tr>
</tbody>
</table>
Clarification on UL CQICH SNR Feedback for MIMO Systems

Jianzhong (Charlie) Zhang

1. Introduction

(Note to editor 4/28/05: This is the accepted version of contribution 118r3, which was accepted in Atlanta, March 2005. Due to some miscommunication, the editor could not find the final version 118r3.)

In 8.4.5.4.10.5 of 802.16e D6 [1], the BS assigns burst profile based on CQI feedback from MSS for both the SISO case and the MIMO case. The feedback assignment is specified in sections 8.4.5.4.12 and 8.4.5.4.15. For MIMO case, two types of SNR feedbacks are specified according to the encoding practice. For a horizontally-encoded system, where different spatial layers carry different code packets, SNR for each layer is fed-back via CQICH in the UL. On the other hand, for a vertically-encoded system, where different spatial layers carry the same code packet, average SNR over spatial layers is feedback via UL CQICH.

It is well understood that for a vertically encoded system, the average SNR over the layers provides an overly pessimistic measure of the current channel quality. The reason is that the arithmetic mean in SNR does not properly account for the contributions from the weaker layers, especially when the SNR disparity among different spatial layers is large. To resolve this problem, in this contribution we propose to change the CQICH feedback for a vertically-encoded system. We propose to feedback an “Effective SNR (Eff_SNR)” that is calculated from the constrained mutual information of the channel that is constrained by the receiver used at the SS. This is a uniform treatment for a vertically-encoded system in the sense that the receiver-constrained mutual information can always be computed, for both LMMSE type of MIMO detectors and ML type of MIMO detectors. In contrast, the per-layer post-processing SNRs and the resulting average SNR across the layers are easy to find for LMMSE type of MIMO detectors, but difficult to obtain for ML type of MIMO detectors.

2. Proposed Text Change

Modify the text in section 8.4.5.4.10.5

After line 35 in page 273

------------begin------------------

MIMO capable MS shall measure post processing S/N for each individual layers as shown in Figure 229b. When the FAST_FEEDBACK subheader Feedback Type field is “00”, the MS shall report the post processing Effective SNR (Eff_SNR) as defined below. When BS requests MS feedback through CQICH_Alloc_IE() or CQICH_Enhanced_Alloc_IE() with ‘00’ Feedback_type field, MS shall report Eff_SNR or individual layer S/N as described in 8.4.5.4.12 and 8.4.5.4.15

Note that the effective SNR (Eff_SNR) is defined as

\[C(d,y|H) \]

where \(C(d,y|H) \) is the receiver-constrained mutual information conditioned on knowing the channel knowledge. Note that \(d \) is the transmitted signal, \(y \) is the post-processing receive signal and \(H \) is the channel matrix between transmit and receive antennas. For example, LMMSE-type of MIMO detectors where individual post-detector-processing signal to noise ratios are given as \(\text{SNR}_1, \ldots, \text{SNR}_n \), then the average receiver-constrained mutual information is given by

\[\sum \text{SNR}_i \]

------------end------------------
considering (a),(b) together we get
\[
\frac{1}{\text{Eff}_\text{SNR}} = \left(\frac{1}{N} \sum_{n=1}^{N} \text{SNR}_n \right)
\]
which is well approximated by average SNR, i.e.,
\[
\text{SNR} = \frac{1}{N} \sum_{n=1}^{N} \text{SNR}_n
\]
when the individual SNRs are reasonably high. On the other hand, for ML MIMO
detectors the receiver-constrained mutual information is simply the MIMO channel mutual information:
\[
\text{(c)}
\]
where \(I_N \) is an \(N \) by \(N \) identity matrix and \(R \) is the correlation matrix of interference plus noise measured at SS.

Once receiver-constrained mutual information is obtained from (b) or (c), equation (a) is used to calculate the \(\text{Eff}_\text{SNR} \) for a vertically encoded system.

![Figure 229b – Post Processing S/N for MIMO](image)

For MS with more than one receive antennas, the following formula shall be used:
\[
\text{SNR} = 10 \log_{10} \left(\text{Ns} - \Delta \right)
\]
where
\[
\text{SNR} = 10 \log_{10} \left(\frac{\text{payload bits}}{\text{nibble}} \right)
\]
for the cases of single transmit antenna BS or 2 and 4 transmit antenna BS using matrix A transmission format and
\[
\text{SNR} = 10 \log_{10} \left(\frac{\text{payload bits}}{\text{nibble}} \right)
\]
for case of 2 and 4 transmit antennas BS using matrix transmission format. \(N_r \) is the number of receive antennas.

When the FAST_FEEBACK subheader Feedback Type field is ‘00’ or at a specific frame indicated in the CQICH_Alloc_IE() (see 8.4.5.4.12), or the Feedback_type field in CQICH_Enhanced_Alloc_IE() is ‘00’ see 8.4.5.4.15), the SS shall report the S/N it measures on the DL. For MS with more than one receive antennas, the following formula shall be used:
\[
\text{(107b)}
\]

where
\[
\text{SNR} = 10 \log_{10} \left(\frac{\text{payload bits}}{\text{nibble}} \right)
\]
for the cases of single transmit antenna BS or 2 and 4 transmit antenna BS using matrix A transmission format and
\[
\text{SNR} = 10 \log_{10} \left(\frac{\text{payload bits}}{\text{nibble}} \right)
\]
for case of 2 and 4 transmit antennas BS using matrix transmission format. \(N_r \) is the number of receive antennas. S/N is post processing effective SNR \(\text{Eff}_\text{SNR} \) as defined in (a).

For an MS which supports the feedback method by using Feedback header, if the value \(M \) is reserved as the indication flag in UCD, the MS shall set the payload bits nibble as \(M-1 \) instead of \(M \) if the outcome of payload bits nibble calculation based on the above equations is \(M \).
Modify the text in section 8.4.5.4.12.1

After line 57 in page 334

8.4.5.4.12.1 CQICH Enhanced Allocation IE Format
For MIMO capable MSs, BS may allocate one or multiple CQICH channels to the MS in UL_MAP. IF
CQICH_Num=0 and feedback type is ‘00’, MS shall report the effective post processing S/R Eff_SNR as defined in 8.4.5.4.10.5. For CQICH_Num>0 and feedback type is ‘00’, MS shall report post processing SNR of individual layers, the order of CQICH channel allocation shall match the order of layer index.

5. References