Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16 >
Title	Rotated Codebooks for Closed-loop MIMO
Date Submitted	2005-05-03
Source(s)	Chan-Byoung Chae, Wonil Roh, Sung-Ryul Yun, Kyunbyoung Ko, JeongTae Oh, Hongsil Jeong, Seungjoo Maeng, Panyuh Joo, Jaeho Jeon, Jerry Kim, Soonyoung Yoon, K. Sivanesan, Marcos Katz, DS Park
	Samsung Electronics Co., Ltd.
	Qinghua Li, Xintian Eddie Lin Intel Corporation
Re:	
Abstract	
Purpose	Adoption of proposed changes into P802.16e
	Crossed-out indicates deleted text, underlined blue indicates new text change to the Standard
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard."
	Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices.</mailto:r.b.marks@ieee.org>

Rotated Codebooks for Closed-loop MIMO

1. Introduction

Four codebooks tabulated in Section 8.4.5.4.11 in D7 standard contain undesirable beamforming vector [1 0...0]T, where the accepted contribution C80216e-05_50r7 is not reflected yet. This may cause switch on/off problem and power imbalance at transmitter. This problem can be solved by rotating the whole codebooks by constant angles, where the rotation doesn't change the distance property or PER performance. Since all matrix codebooks except the one for 4x2 3 bit are generated from vector codebooks, the consequent matrix codebooks are equivalently rotated by constant angles. Therefore, the consequent codebooks maintain the original distance property and get rid off the undesirable vector [1 0...0]T as a part of the codeword.

2. New Vector Codebooks

Let us assume that BS has 4 Tx antennas and MS has 1 Rx antenna. In addition, the system will use 3 bit quantized beamforming mechanism. In this case, BS and MS shall use the V(4,1,3) as following

	Table 298I—V(4, 1, 3)											
Vector index	1	2	3	4	5	6	7	8				
v1	1	0.3780	0.3780	0.3780	0.3780	0.3780	0.3780	0.3780				
v2	0	-0.2698 - _f0.5668	-0.7103+ _f0.1326	0.2830 – _j0.0940	-0.0841 + _f0.6478	0.5247 + f0.3532	0.2058 - _f0.1369	0.0618 – _f0.3332				
v3	0	0.5957+ f0.1578	-0.2350 – _f0.1467	0.0702 – _f0.8261	0.0184 + f0.0490	0.4115 + f0.1825	-0.5211 + _f0.0833	-0.3456+ _f0.5029				
v4	0	0.1587 - £0.2411	0.1371 + f0.4893	-0.2801 + _f0.0491	-0.3272 - f0.5662	0.2639 + f0.4299	0.6136 - f0.3755	-0.5704+ _f0.2113				

After multiplying the unitary matrix, the codebook would be rotated while the property of the codebook is same.

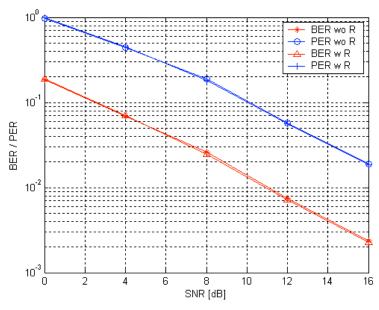


Fig 1. BER/FER Performance for Codebook based CL-MIMO w/wo Rotation Matrix R

(Ped A, 3km/h, BandAMC, QPSK, LDPC R=1/2).

Fig. 1 shows the long term BER/FER performance for codebook based closed-loop MIMO system with different vector codebooks mentioned above. As can be seen, there is no performance difference at all. In addition, all transmit antenna will be used for every channel use.

3. Specific Text Changes

[Modify the section 8.4.8.3.4.1 as follows]

8.4.5.4.11 MIMO feedback for transmit beamforming

Table 298j—V(2, 1, 3)

	Vector index 1		2	3	4	5	6	7	8
-	vl	-1	0.7940	0.7940	0.7941	0.7941	0.3289	0.5112	0.3289
	v2	0	-0.5801 + _f0.1818	0.0576 + _/0.6051	-0.2978 - _j0.5298	0.6038 + f0.0689	0.6614 + J0.6740	0.4754 - _j0.7160	-0.8779 - _f0.3481

Vector Index	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	8
<u>v1</u>	0.7071	<u>0.1805 -</u> i0.1991	<u>0.2877 +</u> j0.3313	<u>0.6775 -</u> j0.4138	0.8290 + i0.3363	<u>0.2263 +</u> i0.6677	<u>0.9572 -</u> j0.1203	<u>-0.0323 -</u> j0.6130
<u>v2</u>	0.7071	0.9424 + j0.1991	0.8353 - j0.3313	0.4455 + j0.4138	0.2941 - j0.3363	0.2389 - j0.6677	<u>-0.2342 +</u> j0.1203	0.4975 + i0.6130

Table 298k—V(3,1,3)

	Vector index	1	2	3	4	5	6	7	8
1	vl	1	0.500	0.500	0.500	0.500	0.4954	0.500	0.500
	v2	0	-0.7201 -	-0.0659+	-0.0063+	0.7171+	0.4819 -	0.0686 -	-0.0054 -
			f0.3126	<i>J</i> 0.1371	f0.6527	f0.3202	J0.4517	<i>J</i> 0.1386	J0.6540
	v3	0	0.2483 - _/0.2684	-0.6283 - _f0.5763	0.4621 - f0.3321	-0.2533+ _f0.2626	0.2963 - _/0.4801	0.6200 + _f0.5845	-0.4566+ _f0.3374

<u>Vector</u> <u>Index</u>	1	2	3	4	<u>5</u>	<u>6</u>	7	8
<u>v1</u>	0.5774	0.3509 -	0.4444 +	-0.3981 +	<u>0.2240 +</u>	0.2389 +	<u>0.1397 – </u>	0.9754 -
		j0.2815	j0.3855	<u>j0.0199</u>	j0.2832	j0.5213	j0.3867	<u>j0.0304</u>
<u>v2</u>	0.5774	0.6687 +	<u>0.6334 – </u>	<u>0.7689 -</u>	-0.0844 -	0.2079 +	<u>-0.0633 +</u>	<u>-0.1892 +</u>
		<u>j0.5198</u>	<u>j0.4512</u>	j0.0569	<u>j0.5255</u>	<u>j0.1413</u>	<u>j0.4470</u>	<u>j0.0655</u>
<u>v3</u>	0.5774	<u>-0.1535 -</u>	<u>-0.2118 +</u>	0.4953 +	<u>0.7264 +</u>	<u>0.4111 -</u>	<u>0.7897 -</u>	<u>0.0799 -</u>
		<u>j0.2383</u>	<u>j0.0657</u>	<u>j0.0370</u>	<u>j0.2423</u>	<u>j0.6625</u>	<u>j0.0603</u>	<u>j0.0351</u>

Table 298I—V(4, 1, 3)

	Vector index	1	2	3	4	5	6	7	8
ı	v1	1	0.3780	0.3780	0.3780	0.3780	0.3780	0.3780	0.3780
	v2	0	-0.2698 - _f0.5668	-0.7103+ _f0.1326	0.2830 - _j0.0940	-0.0841+ f0.6478	0.5247 + f0.3532	0.2058 - f0.1369	0.0618 – f0.3332
	v3	0	0.5957 + _f0.1578	-0.2350 – _f0.1467	0.0702 – 	0.0184 + f0.0490	0.4115 + f0.1825	-0.5211 + f0.0833	-0.3456+ _f0.5029
	v4	0	0.1587 - _j0.2411	0.1371 + _f0.4893	-0.2801 + _/0.0491	-0.3272 - f0.5662	0.2639 + f0.4299	0.6136 - f0.3755	-0.5704+ _f0.2113

Table 2981 V(4,1,3)

Vector index	1		2	3	}	4		5		6		7		8	
v_1	0.5346		0.4603	0.5345	i	0.4279		0.5387		0.5479		0.5097		0.4230	
v_2	0.4316 j0.3108	+	-0.2440 - j0.4767	-0.239 j0.477		0.0870 j0.4841	+	-0.2739 j0.3764	_	0.0996 j0.4084	_	0.0587 j0.4709	+	0.0841 j0.5299	_
v_3	0.4746 j0.1022	+	0.3826 j0.2501	-0.233 j0.447		0.3406 j0.4375	_	-0.4348 j0.1340	_	0.2573 j0.4087	+	-0.3524 j0.4280	+	-0.4104 j0.2759	_
v_4	-0.4406 j0.0383	+	-0.3834 i0.3814	-0.32 j0.265		0.4693 j0.2177	+	0.4529 j0.2845	-	0.2591 j0.4720	+	0.4397 j0.1201	+	-0.5306 j0.0851	+

Table 298p-3-bit 4x2 code-book V(4,2,3)

Matrix index	Column1	Column2	Matrix index	Column1	Column2
0р000	1	0	0b100	0.1918 - j0.0472	-0.3651 - j0.0228
	0	1		-0.3047 + j0.1116	0.0237 + j0.7606
	0	0		-0.7347 - j0.2076	0.1887 + j0.0124
	0	0		0.1028 + j0.5121	-0.3741 + j0.3338
0Ъ001	-0.2654 + j0.2992	-0.5775 - j0.1061	0b101	0.5901 + j0.1973	-0.0758 - j0.0492
	-0.1726 - j0.1816	-0.4013 - j0.3587		-0.2801 - j0.2880	0.3914+j0.3838
	-0.3061 - j0.0744	0.4080 + j0.4140		0.1873 - j0.1430	-0.1034 - j0.7246
	0.4903 + j0.6616	0.1638 j0.0302		0.1643 j0.6074	0.2233 j0.2250
0b010	0.0757 - j0.3932	-0.4334 - j0.3347	0b110	-0.382 + j0.5649	-0.2255 - j0.0721
	-0.4725 - j0.3610	0.1349 + j0.1587		-0.4605 - j0.2626	0.1865 + j0.1422
	-0.0623 - j0.0840	-0.0411 - j0.7644		-0.1984 - j0.0946	-0.8401 + j0.4105
	0.4387 + j0.5317	-0.2402 + j0.1144		-0.159 - j0.4246	0.0852 + j0.0860
0b011	-0.4279 + j0.1357	-0.2098 + j0.1569	0b111	0.6863 + j0.1884	-0.3818 - j0.1527
	-0.6872 + j0.0817	-0.2829 + j0.1676		-0.2705 - j0.2542	0.1367 - j0.1581
	-0.4579 - j0.1706	0.4212 + j0.3038		-0.1384 - j0.2577	0.4864 - j0.0528
	0.2782 + j0.0583	-0.3991 + j0.6279		0.1499 + j0.4976	0.5162 + j0.5304

Table 298p V(4,2,3)

Matrix index	Column 1	Column 2	Matrix index	Column 1	Column 2
0b000	-0.2708 + j0.8679	-0.0944 + j0.0112	0b100	0.0751 – j0.1422	0.1846 – j0.4631
	-0.0600 - j0.1530	0.2193 – j0.3085		0.0938 – j0.4576	0.1671 + j0.4407
	-0.0516 - j0.2875	0.1492 + j0.5635		-0.3732 - j0.7764	-0.1388 + j0.0367
	0.1353 + j0.2069	0.7124 + j0.0194		0.0469 + j0.1080	0.1857 + j0.6886
0b001	-0.0073 - j0.5940	0.1045 - j0.3673	0b101	-0.3026 + j0.7382	0.1155 + j0.0479
	-0.1109 – j0.1173	-0.4875 + j0.5234		0.0382 - j0.0432	0.9120 – j0.1901
	0.3992 - j0.6292 -	0.0392 + j0.1304		0.1598 + j0.0426	-0.2180 + j0.2586

	0.1580 j0.2021	+	-0.2646 j0.5040	_		-0.5367 j0.2115	_	0.0423 – j0.0150
0b010	0.2297 j0.0535	+	0.6464 j0.2850	-	0b110	-0.2263 j0.3800	-	0.0557 – j0.4473
	-0.1360 j0.1466	+	0.6718 j0.0154	+		-0.0183 j0.1668	_	-0.3082 - j0.6856
	-0.3051 j0.6848	-	0.1863 j0.0591	-		0.3656 j0.0189	_	-0.4433 + j0.0438
	0.0929 j0.5777	_	0.0853 j0.0616	+		-0.7961 j0.0918	_	0.1289 + j0.1294
0b011	0.0564 j0.5185	_	-0.0774 j0.3896	-	0b111	-0.3209 j0.4112	+	0.0016 - j0.2893
	0.1022 j0.1047	-	-0.3252 j0.6537	+		0.0833 j0.1153	-	0 . 1 4 4 2 + j0.5480
	-0.3537 j0.4371	_	0.1804 j0.3426	-		0.0177 j0.8201	_	-0.1520 - j0.0435
	-0.6013 j0.1697	-	0.2059 j0.3420	+		0.1439 j0.1184	_	0.4718 - j0.5896

End text proposal

References:

[1] IEEE P802.16-REVd/D7-2004 Draft IEEE Standards for local and metropolitan area networks part 16: Air interface for fixed broadband wireless access systems