Performance Adhoc Group
IEEE 802.17

Khaled Amer

IEEE 802.17
Interim Meeting

January 2001
Agenda

• Performance Adhoc structure
• Status review
 – Performance metrics overview
 • Scenarios
 • Traffic Types
 • Metrics
 – Initial Simulation scenarios
 • Suggestions for first steps in starting common simulations scenarios
• Next steps
Formation of the Perf Adhoc Group

- Requests to have a separate Adhoc group with the right experts to look into performance issues
- Not all 802.17 participants are interested in these issues
Perf Adhoc Objectives

• Agree on common/consistent perf simulation scenarios and metrics:
 – Traffic Models
 – Performance Metrics
 – Test Scenarios
 – Other?
Perf Adhoc Objectives ...

- These would be used to:
 - Compare the performance characteristics of various proposals
 - Compare performance characteristics of RPR solutions vs. using Ethernet switches
Expected Time for Perf Adhoc Group Work

• Expected to work in parallel with the efforts of 802.17 work to assist with development of the RPR standard

• Best estimate would be 8 - 12 months
Participation in Perf Adhoc Group

- Anyone welcome to participate
- People who can contribute to the perf analysis and perf modeling efforts
- People just interested in these topics
- People concerned about performance related issues and comparison process
- And then … anyone is welcome!
Perf Adhoc Plan

• Plan on having parallel sessions to allow more time for discussions
• Will be reporting progress
• Separate mailing list for perf discussions?
Agenda

- Performance Adhoc structure
- **Status review**
 - Performance metrics overview
 - Scenarios
 - Traffic Types
 - Metrics
 - Initial Simulation scenarios
 - Suggestions for first steps in starting common simulations scenarios
- Next steps
Progress and Status Report

• Presentations and discussions held in July plenary and August Interim meetings

• Closed on general performance metrics and scenarios (for now)

• Arrived to agreement on initial simulation scenarios
Progress and Status ...

- These would apply to:
 - Comparing various proposals
 - Comparing RPR mechanisms to using Ethernet switches
Goals of the Performance Modeling Efforts

- Test various aspects affecting ring performance for various proposals
- Investigate fairness, congestion control, admission control, QoS
- Investigate various access methods for the ring
- Investigate Ring restoration performance
- Analyze performance stability
Scenarios

- Configuration Variables:
 - Node count
 - Span distance
 - Data rate
 - On the ring and ingress/egress ports
- Mesh configurations for:
 - Campus, Metro, WAN
Scenarios ...

- Aggregation / Traffic Patterns
 - Tier1 ISP
 - Tier2 ISP
 - MSO (multi-service operator)
 - Metro Customer
 - Pop
 (with corresponding ingress/egress data rates)
Modeling parameters

- Number of flows
- Burstiness (traffic profiles)
- Packetization delay
- MTU
- PHY modeling characteristics
Traffic Types

- Data (normally using TCP)
 - ftp, http
- Multimedia (normally using UDP)
 - Time-sensitive / time insensitive
- Multicast
- Traffic characteristics:
 - Rates, packet size, destination and priority distributions
Metrics

• Global Ring Metrics:
 • Link utilization
 • Global throughput / Goodput
 • Fairness, congestion control, admission control
 • Fault recovery (link, span, node)
 • Stabilization time
 • Switching time
Metrics...

• Per class and per conversation metrics:
 – Packet Loss (ingress/egress/other?)
 – End-to-End Packet Delay
 • Including jitter for time sensitive traffic
 • Access Delay
 – Throughput
 – Fairness
Agenda

- Performance Adhoc structure
- Status review:
 - Performance metrics overview
 - Scenarios
 - Traffic Types
 - Metrics
 - Initial Simulation scenarios
 - Suggestions for starting common simulations scenarios
- Next steps
Objectives

- Establish starting point for simulation scenarios (subset of metrics presented before)
- Simulations to compare performance characteristics of RPR vs. Ethernet
Suggestions for Starting Simulation Scenarios

• Testing Basic Ring Parameters
 – Ring Performance
 – Congestion Control
 – Fairness
Suggestions for Later Simulation Scenarios

• Comparison of RPR vs. Ethernet Switches
 – Performance characteristics
 – Switch-over characteristics
 (I believe that this is needed now?)

• Spatial reuse
Ring Performance

- **Metrics:**
 - Link utilization under heavy loads
 - Flow control overhead
 - Global throughput
Congestion Control

• Metrics:
 – Throughput in the presence of congestion
 • Per class
 • Per node
 • Per conversation (or flow)
Fairness

• Metrics:
 – Throughput and end-to-end packet delay and jitter:
 • Per class
 • Per node
 • Per conversation (or flow)
• Need scenarios that demonstrate fairness in overload conditions
Suggested Starting Configuration

• Dual Ring
• 16 nodes (0 - 15)?
• Ring running under capacity and well as over capacity (overload)
• Ring circumference (100Km, 1000Km)?
• Ring rate: 10G
Suggested Starting Applications

- Hub application
 - 50% of the traffic is generated by all nodes and flows to the hub node (let’s say node #15)
 - 50% of the traffic is generated by the hub node and flows to all the other nodes
Suggested Starting Applications ...

- Random source/destination pairs
 - Would demonstrate spatial reuse effect better than hub application
 - Need to come up with some common way of generating the random source/dest pairs
Suggested Traffic Scenarios

- Scenario #1:
 - Multimedia
 - Using UDP
 - No upper layer protocol
- Scenario #2 (later)
 - Data (using TCP)
Suggested Traffic Scenarios ...

• Scenario #3 (later):
 Mix of:
 – Data (using TCP)
 – Multimedia:
 • Using UDP
 • No upper layer protocol
Suggested Traffic Characteristics

• Packet size distributions (probabilistic):
 – Trimodal (40% 64B, 40% 512B, 20% 1518B)
 – Bimodal (50% 64B, 50% 9KB)
• Committed rate per node
 – 30% of ring capacity / # nodes
 – 60% of ring capacity / # nodes
Suggested Traffic Characteristics ...

- Offered load
 - Each node provides load of:
 - 200% of ring capacity / # nodes
 - Staggered traffic input for each port

- Traffic distribution
 - 10 conversations (flows) per node
 - On/Off with staggering period
 - Needs to be quantified in more detail
Suggested Simulation output results

- Throughput
- ETE delay
- Jitter (99.9th percentile of delays)
- For all output results:
 - Show curves and numbers
 - Per node, per class, per conversation
Agenda

• Status review:
 – Performance metrics overview
 • Scenarios
 • Traffic Types
 • Metrics
 – Initial Simulation scenarios
 • Suggestions for starting common simulations scenarios

• Next steps
Next Steps

• Separate breakout session for Performance Adhoc
• Presentations showing performance characteristics of proposals
• Presentations comparing performance characteristics of RPR rings vs. Ethernet rings
• Other suggestions?
Discussions
Perf Adhoc Discussions

- Lunch meeting (8 attended)
- Discuss objectives and work to be done
- Discuss some of the open issues raised during the performance presentation
- Discuss next steps
Perf Adhoc Discussions

Discussions on:

- Modeling tools
- Convergence of simulation results (length of simulations)
- Availability of models from various vendors
- Traffic input characterization
Perf Adhoc Discussions

- Architectural/behavioral abstractions needed for each RPR proposal
- Reference model (?)
- Understand the effect of various architectural aspects instead of various vendor implementations
Perf Adhoc Discussions ...

Objectives:

– Set parameters, metrics, scenarios to help provide a consistent way of comparing architectural ideas

– Not chartered to run simulations for the working group
Perf Adhoc Discussions …

Resolution of open issues:
Packet size distributions (probabilistic):

- Trimodal
 - (60% 64B, 20% 512B, 20% 1518B)

- Quadmodal (?)
 - (50% 64B, 15% 512B, 15% 1518B, 20% 9K)
Unresolved issues:

Starting scenarios options:

- Using UDP
- No upper layer protocol
- Data using TCP
- Combination?
Perf Adhoc Discussions …

Step #2

- Scenarios to include:
 - 2 node rings
 - 3 node rings
 - Multiple rings
Perf Adhoc Discussions …

Unaddressed issues:

• Input traffic arrival distribution
Perf Adhoc Conclusions

• Too many open issues to start simulations based on the recommendations of the perf adhoc group
• Request 2 sessions in March (4 hours each)
• Discussions on the RPR reflector between now and March