

OAM&P Requirements for RPR

Portland IEEE 802.17 Meeting – July 2001 Italo Busi – Alcatel

Table of Contents

- Introduction
- In-band OAM
- Configuration Management
- Fault Management
- Statistics (Performance) Management
- Conclusions

Introduction

- OAM&P Definitions
- ❖ IEEE 802.17 functional model

Scope of the presentation

- First attempt to analyze some OAM&P requirements that are relevant for the IEEE 802.17 standard activity
 - Reusing existing PHYs means also reusing the already defined OAM&P requirements for those PHYs
 - Only MAC related OAM&P requirements should be defined by IEEE 802.17
 - Other requirements are in the scope of the upper layers
- Hypothesis Sonet/SDH interfaces are using the GFP encapsulation mechanism
 - The HDLC/PPP case, if supported, has analogous OAM&P requirements

OAM&P Definitions

- ❖ OAM&P Operations, Administration, Maintenance & Provisioning
- Configuration Management
 - NE configuration (provisioning)
 - Configuration check and report
- Fault Management
 - Fault indication retrieval and processing
 - Production of alarm indications and alarm handling
- Performance Management
 - Quantitative performance monitoring for system performance control and report
 - Performance and quality report
- Some in-band OAM mechanism can be defined to support fault and performance management

IEEE 802.17 Ring View

IEEE 802.17 Functional Model

Three interfaces

- ◆ Two span interfaces (east and west PHYs) ⇒ Medium dependent OAM&P
 - ☐ Ethernet span interfaces when using IEEE 802.3 PHYs
 - ☐ GFP span interfaces when using Sonet/SDH PHYs with the GFP encapsulation method
- RPR interface (MAC) ⇒ Medium independent OAM&P

In-band OAM

PHY dependent requirements

Sonet/SDH PHYs

◆ IEEE 802.17 should reuse the existing in-band OAM functionality (G.783)

Ethernet PHYs

- The 1GbE and 10GbE LAN IEEE 802.3 standard has no in-band OAM functionality
- The 10GbE WAN IEEE 802.3 standard (10GBase-W) is defining some OAM functionality similar to the OC-192c Sonet/SDH

MAC requirements

- No additional in-band OAM functionality is required in the RPR <u>MAC</u> layer
- Some additional OAM functions are required in the upper layers to support services over RPR
 - ◆ They are outside the scope of the IEEE 802.17 MAC
 - They depend on the upper layer that is used to offer services over an RPR network

Configuration Management

Interface activation/deactivation

- Each interface can be activated/deactivated for administrative purposes
- The RPR interface is a stacked interface over the two span interfaces
 - It can be activated only if at least one of the underlying span interface is active
- Each span interface can be activated/deactivated separately
 - The MAC can send packets only to activated span interfaces
 - ◆ A span interface can be deactivated only if either the RPR interface or the other span interface or both are still active
 - Ethernet span interfaces are the lowest level interfaces
 - ☐ They can be activated at any time
 - GFP span interfaces are stacked over Sonet/SDH interfaces
 - ☐ They can be activated only if the underlying Sonet/SDH interface is active

Operational State

- Each interface has its own operational state that can be used for maintenance purposes
- The operational state of span interface is medium dependent
 - These conditions are already defined in the relevant standard recommendations (IEEE 802.3, G.783 and G.gfp)
- The RPR interface is down when deactivated and/or both the underlying span interfaces are down, and up in all the other cases

RPR MAC Configuration

- It should be possible to read the RPR MAC address for maintenance purposes
 - It is always fixed by the vendor
- It should be also possible to configure and monitor the auto-configuration (e.g. topology discovery) protocol
 - The protocol can be monitored for maintenance purposes
 - It should be possible to disable the support of some features even if supported by all the NEs on the ring
- The detailed requirements depend on the mechanism that will be used by IEEE 802.17

RPR MAC Configuration – 2

- It should be possible to configure and monitor the protection switching mechanism
- These are traditional requirements to configure protection mechanisms and are quite independent on the mechanism that is used
 - It should be possible to monitor, for maintenance purposes, the state of the protection switching
 - It should be possible to activate/deactivate the protection switching
 - It should be possible to activate/deactivate the usage of the Signal Degrade as a switching criteria
 - An hold-off timer (HOT) should be set for each span interface
 - ☐ It depends on the type of media we have between two adjacent nodes
 - A wait to restore timer (WTR) should be set
 - It should be possible to force a switching event for operational purposes

Fault Management

Fault Management

- GFP span interfaces the fault management is already defined in the relevant recommendations (G.783 and G.gfp)
 - Note G.gfp is still under development by ITU-T (and T1X1)
- Ethernet span interfaces the fault management is already defined in the relevant recommendations (IEEE 802.3)
 - Only the PHY requirements are relevant for the IEEE 802.17
- No faults are foreseen in the RPR layer

Performance Management

PHY dependent requirements

Sonet/SDH PHYs

- ◆ IEEE 802.17 should reuse the existing PM defined in the relevant recommendations (G.783 and G.gfp)
- Note G.gfp is still under development in ITU-T (and T1X1)

Ethernet PHYs

◆ IEEE 802.17 should reuse the existing PM defined in the relevant specifications (IEEE 802.3)

RPR Interface Statistics

- The following implementation independent statistics should be kept by an RPR interface
 - Frames/octets inserted on the ring (by the upper layer)
 - Frames/octets delivered to the upper layer
 - Frames stripped because originated by the node itself (source stripping)
 - Frames discarded because of the TTL expiration
 - Frames addressed to the node discarded because of a bad FCS [TBC]
 - Frames addressed to the node discarded because of an unknown or unsupported protocol

RPR Interface Statistics – 2

- The following statistics, whose meaning is implementation dependent should be kept by an RPR interface
 - Frames addressed to the node discarded even if no error is detected (e.g. because of input buffer congestion)
 - Frames originated by the node discarded even if no error is detected (e.g. because of output buffer congestion)
 - Frames passing-through the node discarded even if no error is detected (e.g. because of transit buffer congestion)
- In some implementations the previous counters (or some of them) can always be equal to 0

Conclusions

Conclusion and Requirements

- IEEE 802.17 shall re-use the already defined OAM&P requirements for the existing PHYs
 - ♦ These requirements are medium dependent
- ❖ IEEE 802.17 shall define the OAM&P requirements affecting the MAC layer
 - Some requirements have been identified in this presentation as a basis for an ongoing discussion
 - Some new requirements can arise during the detailed specification of all the MAC mechanisms