

Mapping of RPR over Sonet/SDH

Portland IEEE 802.17 Meeting – July 2001

Italo Busi – Alcatel

Mark A. Bordogna – Agere

Robin Olsson - Vitesse

Harry Peng – Nortel

Table of Contents

- Introduction
- HDLC/PPP Encapsulation
- GFP Encapsulation
- HDLC and GFP Comparisons
- Conclusion

Introduction

Scope of the presentation

- Analyze the possible alternatives to map RPR frames over a Sonet/SDH container
 - ♦ HDLC/PPP as defined in IETF RFC 1661, RFC 1662 and RFC 2615
 - GFP as defined in T1X1 and ITU-T G.gfp
- Compare the two options
- Analyze the encapsulation issues in IEEE 802.17
 - IEEE 802.17 standard should specify also the encapsulation method(s) supported as part of the Sonet/SDH PHYs

Functionality of the encapsulation mechanism

- Sonet/SDH has a synchronous, octet-oriented interface
 - The Sonet/SDH layer must be fed with a continuous and synchronous octet stream in the egress direction
 - ♦ A continuous and synchronous octect stream is received in the ingress direction
- The IEEE 802.17 MAC has an asynchronous, frame-oriented interface
- The encapsulation should adapt these two kinds of interface
 - It should provide a method for frame delineation in the received direction
 - It should provide a method for coding the silence times
 - It should provide a method for map different frame types over the same Sonet/SDH path
 - It should be robust enough to acceptable bit errors
 - It should not be vulnerable to malicious users

HDLC/PPP Encapsulation

HDLC/PPP Encapsulation – a brief summary

1 Byte	1 Byte	1 Byte	2 Bytes	Variable Length	2/4 Bytes	1 Byte
Flag	Address	Control	Protocol	Payload	FCS	Flag

- ❖ Flag Fixed to the '0111 1110' (0x7E) value
 - It is used to delineate the frame as well as an inter-frame filler
- ❖ Address Fixed to the '1111 1111' (0xFF) value
 - If a different value is received, the frame is discarded
- ❖ Control Fixed to the '0000 0011' (0x03) value
 - If a different value is received the frame is discarded
- ❖ **Protocol** It indicates which kind of frame is carried in the payload area
 - If an unexpected or unsupported value is received the frame is discarded
- Payload It represents the RPR MAC frame
- FCS It is the CRC-16 or CRC-32 calculated on all the frame, excluding flags

Frame Delineation and Rate Adaptation

- The flag sequence is used to delineate the frame
 - The first non-flag octet following a sequence of one or more flag octets is considered the first octet of a new frame
 - The end of the frame is detected when the next flag octet is received.
 - Silence between two frames are filled by transmitting more flag octets. At least one flag octet is sent between two consecutive frames
- There can not be flag octets inside the frame in the transmitted octet stream
- An octet stuffing procedure is used, based on the escape code '0111 1101' (0x7D), as part of line coding inflation factor
 - Each flag emulating octet in the payload is substituted by the following couple of octets: 0x7D, 0x5E
 - Each escape code in the payload is substituted by the following couple of octets:
 0x7D, 0x5D
 - The opposite operations are done during reception

GFP Encapsulation

GFP Encapsulation – current status

General GFP Frame

2 Bytes PLI 2 Bytes **cHEC** 2 Bytes Type 2 Bytes tHEC Extension Variable Header Length (3 types) Variable **Payload** Length 4 Bytes FCS (Optional)

Null Extension header

for point-to-point configurations dedicated to one client signal

Extension header for Linear frame

1 Bytes CID

1 Bytes Spare

2 Bytes eHEC

Extension header for Ring frame

1 Bytes SP DP 1 Bytes Spare1 1 Bytes DE+Cos Spare2 1 Bytes TTL 6 Bytes **Destination MAC** 6 Bytes Source MAC 2 Bytes **eHEC**

❖ IEEE 802.17 needs only (?) the GFP frame encapsulation with <u>null extension header</u> as an alternative to the HDLC/PPP encapsulation

GFP Encapsulation fields

- PLI PDU Length Indicator
 - It is used to delineate the frame
- Type It indicates the type of encapsulated frame (similar to the Protocol field), the type of extension header and the presence/absence of the client FCS trailer
- CID Channel Identifier used to multiplex different client signals over the same Sonet/SDH path

Frame Delineation and Rate Adaptation

- Using the cHEC as the HEC on the PLI it is possible to identify a candidate start of a frame. The PLI value indicates where is the start of the next frame.
 - After having received two consecutive and correct candidate frames, the alignment state is entered
 - The frames are delineated based on the PLI values
 - The cHEC code is able to correct single-bit errors in the PLI and cHEC fields
 - Alignment is lost when two consecutive frames experience single-bit errors or when a frame experience a multi-bit error in the PLI and cHEC fields
- Silence between two consecutive frames are filled by transmitting idle frames

Idle GFP Frame

2 Bytes PLI = 0
2 Bytes cHEC

HDLC and **GFP** Comparison

GFP and HDLC – a comparison

GFP is more efficient than HDLC

♦ It has no inflation factor but a fixed overhead, almost equal to the minimum overhead in HDLC → traffic management and QoS control is much more easy

GFP is more robust than HDLC

- A single bit-error in the PLI or cHEC field does not cause loss of alignment, while with HDLC a single bit-error in the flag causes loss of alignment
- Malicious users can not degrade the service by sending ad-hoc formed frames

GFP scales very well to higher bit rates

- ASIC designs are not impacted by the data rate expansion on a byte level
- It is also supported by WDM/OTN interfaces
- HDLC has been an established method to map packets over Sonet/SDH interfaces while GFP is a new encapsulation method

Conclusions

Requirements

- IEEE 802.17 should support the GFP encapsulation for Sonet/SDH ring interfaces
 - Ask ITU-T and T1X1 to allocate a Type code representing GFP frames, with a null extension header
- The support of GFP does not exclude supporting also HDLC the need to support both, as well as any interoperability issue, is left for open discussion