

Transit Buffer Implementations for 3 Classes of Service in RPR

Necdet Uzun and Pinar Yilmaz

AuroraNetics, Inc.

July 8-13, 2001 Portland, Oregon 802-17-01-00020, nu_crate_03.pdf

Contents

- Objectives
- Why 3 priorities?
- Node Model
- Simulation results
- Conclusion

Objectives

- Provide 3 priority classes in the ring:
- High Priority
 - Guaranteed bandwidth (provisioned)
 - Bounded delay and bounded jitter
- Medium Priority
 - Committed bandwidth (provisioned), best effort for excess traffic
 - Bounded delay and (loosely) bounded jitter
- Low Priority
 - No guarantees
 - Best effort for bandwidth, delay and jitter

Why 3 Priorities?

- 3 traffic types with very specific behavior
- Mapped from Diffserv/MPLS/802.1Q CoS (3 bits)
- Good compromise between the types of services and the implementation
- Further classification performed by higher layers
- RPR MAC divides unprovisioned bandwidth fairly among nodes

Node Model

Mapped from Diffserv/MPLS/802.1Q (3 bits)

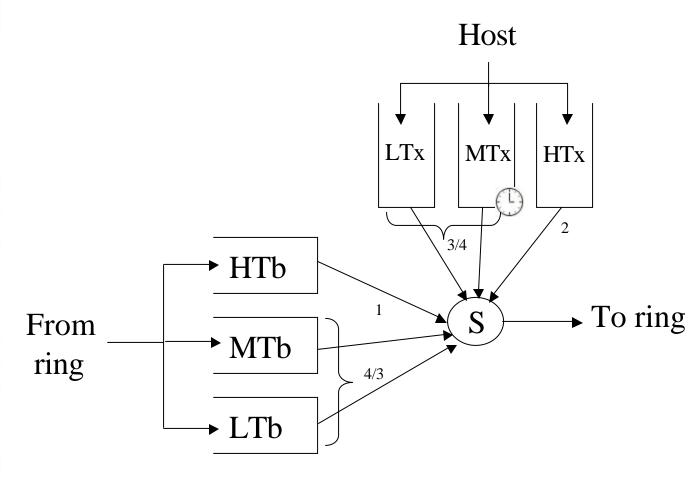
If Priority < "Med Prio Threshold" then Low Priority

Else if Priority < "High Prio Threshold" then Med Priority

Else High Priority

- Committed Access Rate (CAR) for MP
 - MP Traffic only when exceeds CAR is subject to fairness algorithm control
- Number of transit buffers configurable
 - 2Tb: MP gets buffered in LTb
 - 3Tb: MP gets buffered in a separate queue

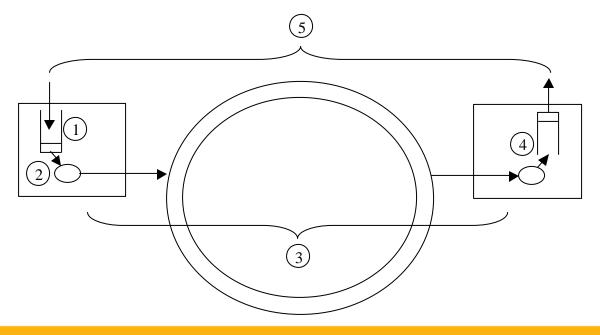
DATA PROCES


Node Model (cont)

Network Coo

Optica Speeds

roces


Important Statistics

MAC ETE = Queuing Delay + Medium Access Delay +
Ring ETE Delay (+Receive Buffer Delay)

Ring ETE = Pkt Tx + PropDelay + Transit Node Delay

Transit Node Delay = Pkt Handling Time + (Insertion/Tb) Buffer Delay

Optical Speeds

roces Packe

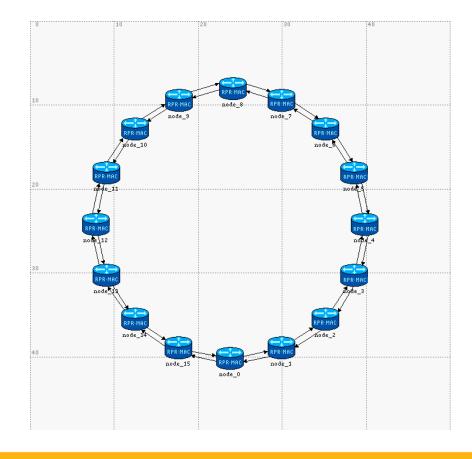
DATA PROCES

Scenarios

- 16 node, 100Km OC192 dual ring
- Packet size: 64B(%60), 512B(%20), 1518B(%20)
- Buffers:

$$-$$
 HTb = 32KB

$$-$$
 MTb = 256KB


$$-$$
 LTb = 256KB

$$-LTx = 256MB$$

$$- MTx = 512 KB$$

$$-$$
 HTx = 256KB

Store and forward

Hub Traffic Scenario

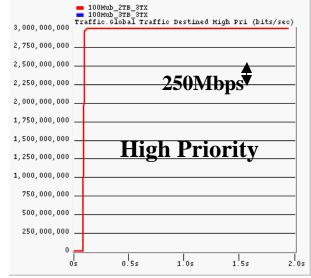
- Node 7,6,5,4,3,2,1 to Hub (Node 0):
 - HTx: 430Mbps CBR
 - 1 tri-modal source per node
 - LTx: 1.15Gbps bursts
 - 1 tri-modal source per node, on 1msec, off 1msec, exponential distribution
 - total of ~570Mbps LTx per node
 - MTx: 860Mbps bursts
 - 1 tri-modal source per node, on 1msec, off 1msec, exponential distribution
 - total of ~430Mbps MTx per node
 - CAR per node 430Mbps
- In addition, Nodes double their MP traffic at 1sec
- Total traffic destined at Hub: ~10Gbps
 - 0.1-1 sec: %30HP, %30MP, %40LP
 - 1-2 sec: %30HP, %60MP, %10LP
 - Total simulation run-time: 2sec

Throughput Comparison

■ 100Hub_2TB_3TX ■ 100Hub_3TB_3TX Traffic.6lobal Traffic Destined (bits/sec)

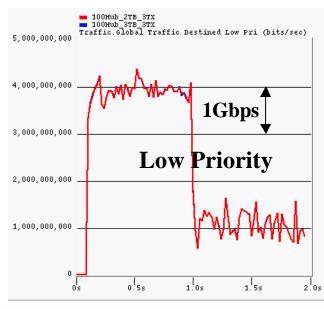
1.0s

0.5s

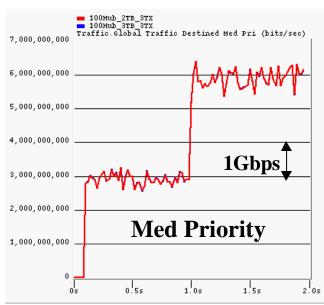


9,000,000,000 1Gbps 8,000,000,000 7,000,000,000 6,000,000,000 5.000.000.000 4,000,000,000 3,000,000,000

10,000,000,000


2,000,000,000

1,000,000,000

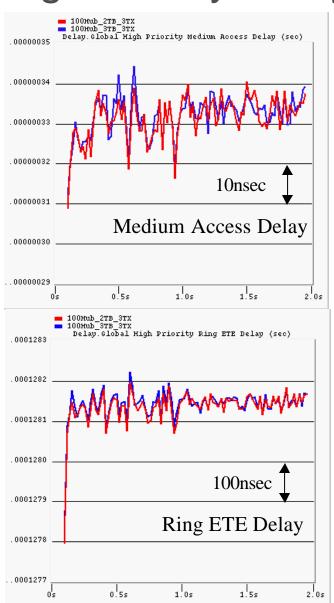


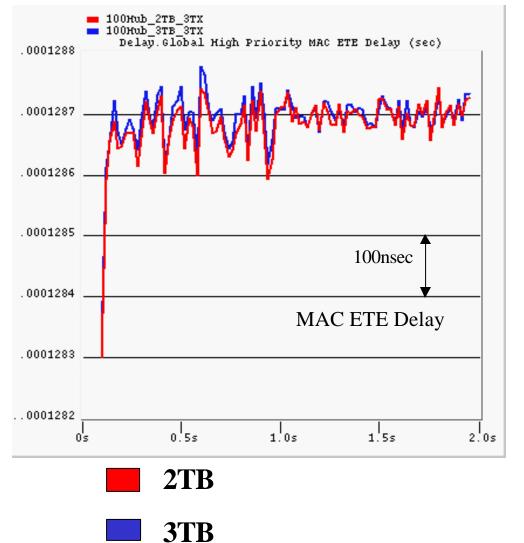
2TB

3TB

1.5s

DAT PROCES


High Priority Delay Comparison

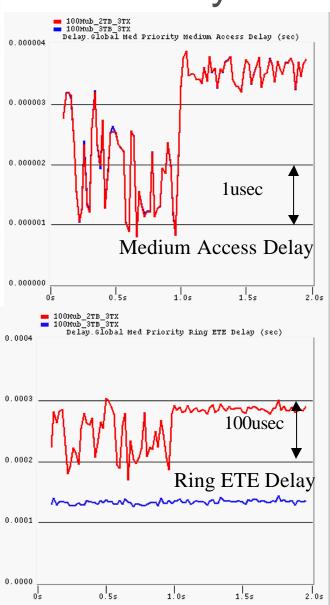


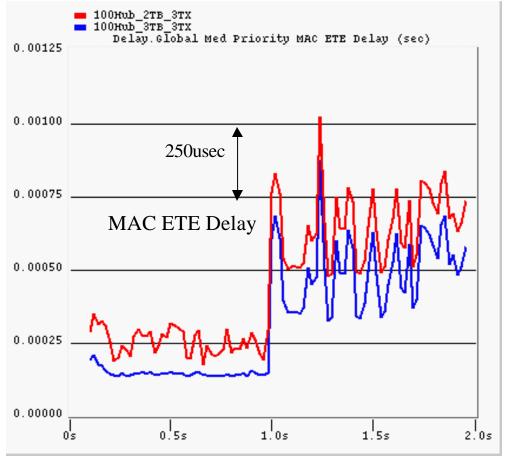
Network Co unications

Optica

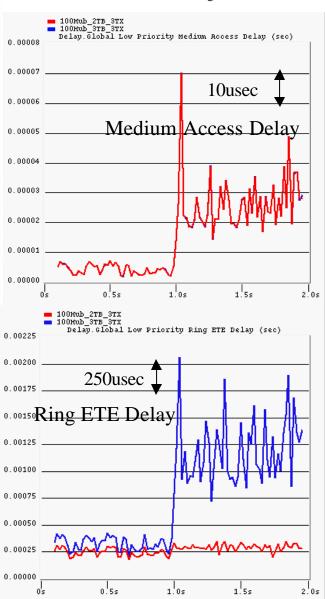
roces Packe

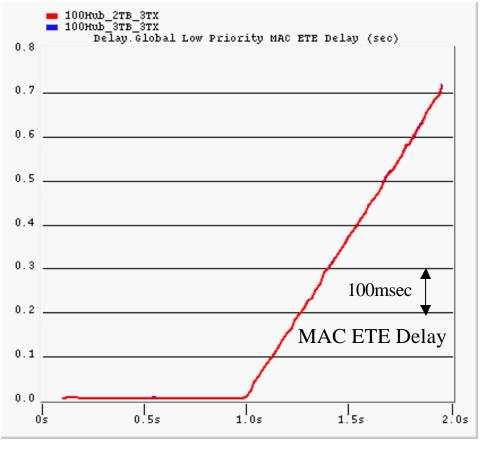
PROCES


Med Priority Delay Comparison



roces Packe



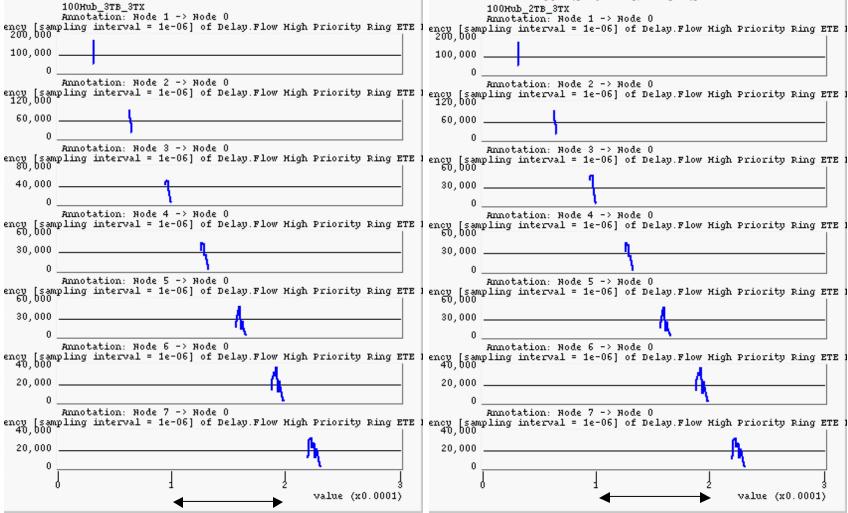


Low Priority Delay Comparison

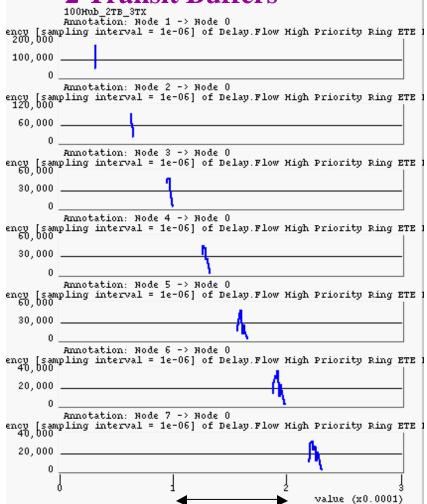
High Pri MAC ETE Delay Histogram

2 Transit Buffers

100usec


3 Transit Buffers

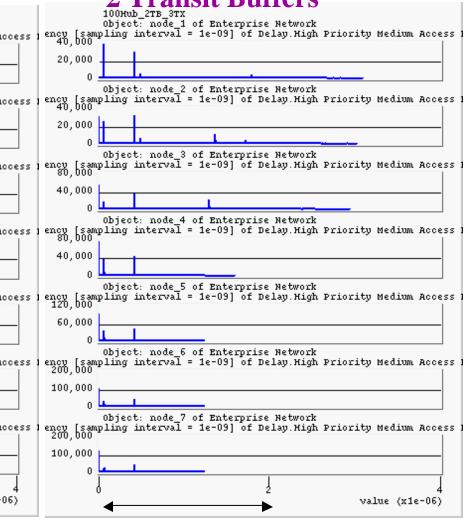
100usec


100Hub_3TB_3TX Annotation: Node 1 -> Node 0 Annotation: Node 1 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D 100,000 _ 100,000 | Annotation: Node 2 -> Node 0 Annotation: Node 2 -> Node 0 tenop [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D 80,000 tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D 80.000 40,000 ___ 40,000 . Annotation: Node 3 -> Node 0 Annotation: Node 3 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D 30,000 __ 30,000 __ Annotation: Node 4 -> Node 0 Annotation: Node 4 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D 60,000 tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D 30,000 ____ 30,000 _ Annotation: Node 5 -> Node 0 Annotation: Node 5 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D 60,000 tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D 60,000 30,000 _ 30,000 ___ Annotation: Node 6 -> Node 0 Annotation: Node 6 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D 40,000 tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D 20,000 _ 20.000 ____ Annotation: Node 7 -> Node 0 Annotation: Node 7 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D ency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D 40,000 20,000 _ value (x0.0001) value (x0.0001)

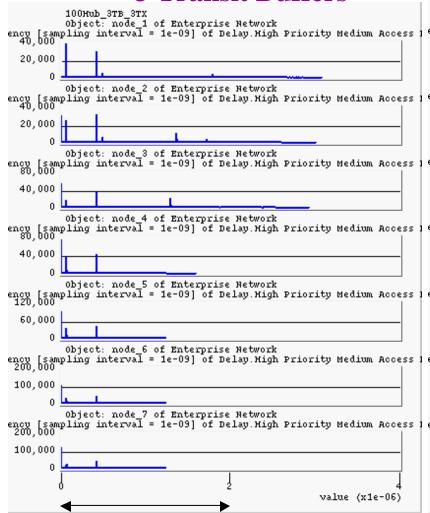
High Pri Ring ETE Delay Histogram

3 Transit Buffers

100usec

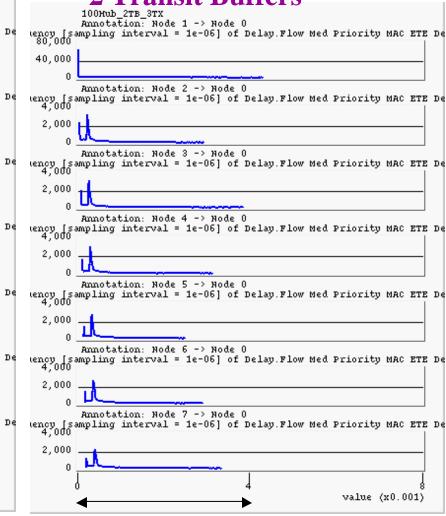


100usec


High Pri MedAcc Delay Histogram

AuroraNetics, Inc.

2usec



2usec

40,000

Med Pri MAC ETE Delay Histogram

2 Transit Buffers

100Hub_3TB_3TX Annotation: Node 1 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Med Priority MAC ETE De

3 Transit Buffers

tency [sampling interval = 1e-06] of Delay.Flow Med Priority MAC ETE De 20,000 Annotation: Node 3 -> Node 0

tency [sampling interval = 1e-06] of Delay.Flow Med Priority MAC ETE De 20,000 10,000 Annotation: Node 4 -> Node 0

tency [sampling interval = 1e-06] of Delay.Flow Med Priority MAC ETE De 20,000 10,000

tency [sampling interval = 1e-06] of Delay.Flow Med Priority MAC ETE De 20,000 10,000

tency [sampling interval = 1e-06] of Delay.Flow Med Priority MAC ETE De 20,000 10,000 Annotation: Node 7 -> Node 0

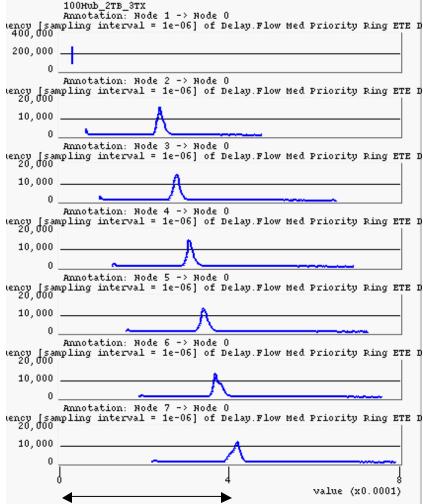
Annotation: Node 6 -> Node 0

tency [sampling interval = 1e-06] of Delay.Flow Med Priority MAC ETE De 12,000 6,000 value (x0.001)

4msec

4msec

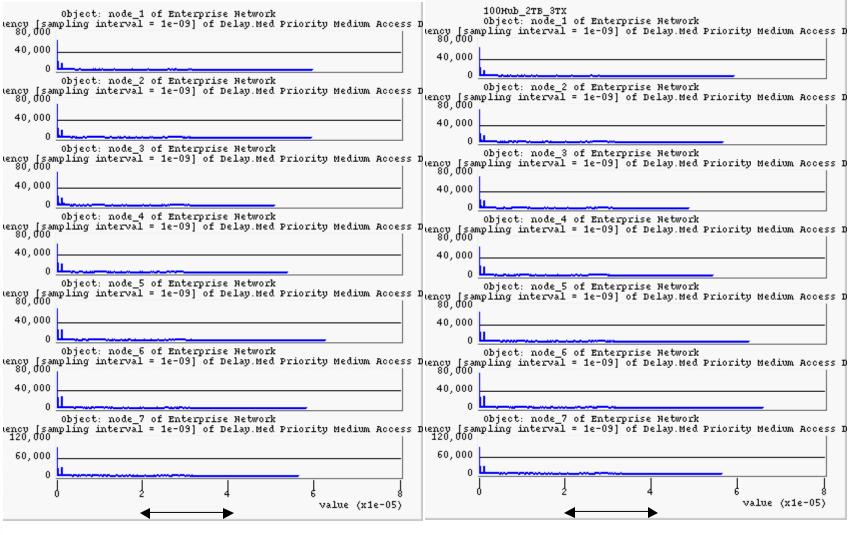
value (x0.001)


Med Pri Ring ETE Delay Histogram

3 Transit Buffers

100Hub_3TB_3TX Annotation: Node 1 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Med Priority Ring ETE D 200,000 Annotation: Node 2 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Med Priority Ring ETE D 60.000 _ Annotation: Node 3 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Med Priority Ring ETE D 80,000 Annotation: Node 4 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Med Priority Ring ETE D 30,000 _ Annotation: Node 5 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Med Priority Ring ETE D 30,000 _ Annotation: Node 6 -> Node 0 ency [sampling interval = 1e-06] of Delay.Flow Med Priority Ring ETE D 40,000 20,000 _ Annotation: Node 7 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Med Priority Ring ETE D 20,000 value (x0.0001)

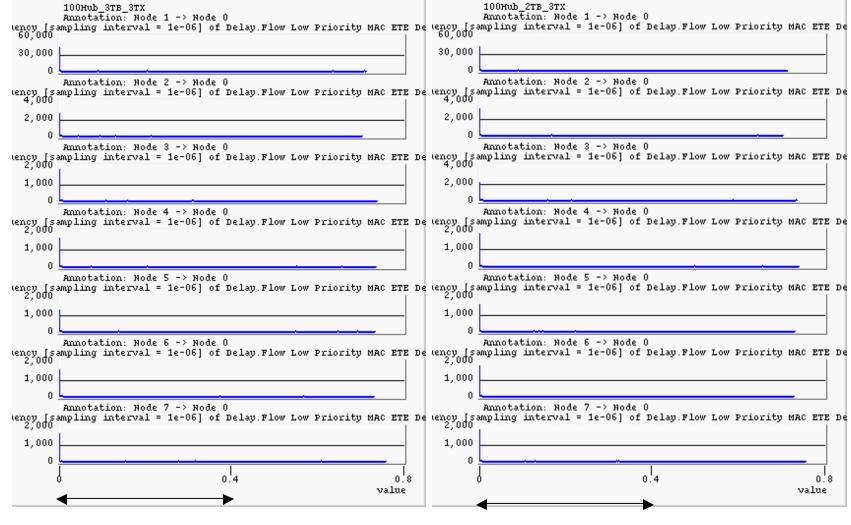
400usec


400usec

Med Pri MedAcc Delay Histogram
3 Transit Buffers
2 Transit Bu

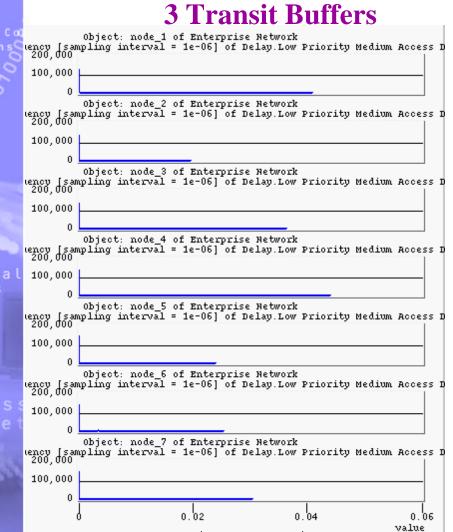
20usec

2 Transit Buffers urora Netics, Inc.


20usec

7/11/2001

Low Pri MAC ETE Delay Histogram


2 Transit Buffers 3 Transit Buffers

Low Pri Ring ETE Delay Histogram 3 Transit Buffers 100Hub_3TB_3TX Annotation: Node 1 -> Node 0 Annotation: Node 1 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D 200,000 tency [sampling interval = 1e-06] of Delay Flow Low Priority Ring ETE D 200,000 100,000 100,000 Annotation: Node 2 -> Node 0 Annotation: Node 2 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D 3,000 Annotation: Node 3 -> Node 0 Annotation: Node 3 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D
4.000 2,000 Annotation: Node 4 -> Node 0 Annotation: Node 4 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D 1,000 Annotation: Node 5 -> Node 0 Annotation: Node 5 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D 4,000 1,000 Annotation: Node 6 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Low Priority Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Ring ETE D (ency [sampling interval = 1e-06]) of Delay.Flow Ring ETE D (ency [sampling interval = 1e-06]) of 1,000 Annotation: Node 7 -> Node 0 Annotation: Node 7 -> Node 0 tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D 4,000 1,000 value (x0.001) value (x0.001) 4msec 4msec

Low Pri MedAcc Delay Histogram

20msec

20msec

Conclusion

- With 3 transmit buffers and a rate limiter for MP, we can provide guaranteed bandwidth to MP
- 2 transit buffers perform just as well in terms of throughput, delay and jitter for provisioned traffic as 3 transit buffers
- Delay and jitter guarantees are compromised with single transit buffer for provisioned traffic

(http://grouper.ieee.org/groups/802/17/documents/presentations/may2001/nu_ctvst_02.pdf)

Thank you!

Q & A