

Phase I Simulation Results

Pinar Yilmaz and Necdet Uzun

AuroraNetics, Inc.

July 8-13, 2001 Portland, Oregon

Contents

- Objectives
- Single/dual priority transit buffer ring contention resolution algorithms
- Simulation results
- Conclusion

Objectives

- Guaranteed END-TO-END delay and jitter bound for high priority traffic
- Priority discrimination and separation
 - LP traffic does not affect performance of HP traffic
- No packet loss on the ring
- Maximum available ring throughput
 - Delay/jitter performance of HP traffic is not affected by over provisioning of LP traffic
- Best possible delay and jitter for low priority traffic

Simulation Models

• Single Transit Buffer

- Tb = 4KB (Cut-Through)
- Transit packets have priority over transmit packets

Two Transit Buffers

- HTb = 4KB (Store-and Forward)
- LTb = 256KB (Store-and Forward)
- Only high-priority transit traffic cuts through the transmit traffic
- Transit packets are fully stored before they are forwarded to the ring (SF)

roces

Scenarios

- 16 node, OC192 dual ring
- 100 km:
 - Segment Delay = 31.25μ sec
- 1000km:
 - Segment Delay = 312.5μ sec
- Packet size:
 - 64B(%60), 512B(%20), 1518B(%20)

- 400

Traffic scenarios: Mesh (Any-to-Any)

- HTx: 370Mbps CBR
 - 1 tri-modal source per node
- LTx: 2.1Gbps bursts
 - 16 tri-modal sources per node
 - on 1msec, off 9msec, exponential distribution
 - total of ~3.4Gbps LTx per node
- Total traffic injected: ~60Gbps
 - Total HP traffic is ~6Gbps

Traffic scenarios: Hub (Any-to-Hub, Hub-to-Any)

- Node 1,2,3,4,5,6,7 to Hub (Node 0):
 - HTx: 430Mbps CBR
 - 1 tri-modal source per node
 - LTx: 2Gbps bursts
 - 1 tri-modal source per node
 - on 1msec, off 1msec, exponential distribution
 - total of ~1Gbps LTx per node
- Total traffic injected: ~10Gbps
- Total HP traffic is ~3Gbps

Important Statistics

MAC ETE = Queuing Delay + Medium Access Delay +
Ring ETE Delay (+Receive Buffer Delay)

Ring ETE = Pkt Tx + PropDelay + Transit Node Delay

Transit Node Delay = Pkt Handling Time + (Insertion/Tb) Buffer Delay

Optical Speeds

roces Packe

High Priority Ring ETE Delay Jitter Calculation

- Node 7 to Node 0, 100 km ring
 - 64B Transmission Delay = 0.07 µsec
 - 1500B Transmission Delay = 1.24 µsec
 - Propagation Delay = $31.25 \mu sec$ (on each segment)
- Best Case: 64B pkt never waits
- Worst Case: 1500B pkt waits for a 1500B pkt at every node
- Single Transit Buffer (Cut-Through)
 - Best Case: 7*PropDelay + TransDelay = 218.82 μsec
 - Worst Case: 7*PropDelay + 6*TransDelay = 226.19 μsec
 - Ring ETE Jitter: $226.19 218.82 = 7.37 \mu sec$
- Two Transit Buffers (Store-and Forward)
 - Best Case: 7*(PropDelay + TransDelay) = 219.24 μsec
 - Worst Case:
 - $7*(PropDelay + TransDelay) + 6*TransDelay = 234.87 \mu sec$
 - Ring ETE Jitter: $234.87 219.24 = 15.63 \mu sec$

High Priority Medium Access Delay Jitter Calculation Aurora Netics, Inc.

- Worst Case: Node 1 wants to send to Node 0
- Single Transit Buffer (Cut-Through)
 - Congestion message is sent to upstream and is relayed all the way up to Node 7 and Node 7 decreases its LP add rate.
 - $(6*PropDelay)*2 = 375 \mu sec$ (DEPENDS ON RING SIZE)
- Two Transit Buffers (Store-and Forward)
 - All the prior nodes (7,6,5,4,3,2) have sent 1500B HP pkts back to back and transmission starts immediately after pkt from Node 2 is completely received.
 - $-6*TransDelay = 7.44 \mu sec$

DA I PROCES

100 km Hub - Throughput

roces Packe

100 km Hub – Fairness PROCES Low Priority Traffic Sourced

Dual Transit Buffer

Single Transit Buffer

100.000

100 km Hub High Priority MAC ETE Delay Histogram

tency [sampling interval = 1e-06] of Delay.Flow High Priority MAC ETE D

Dual Transit Buffer

Annotation: Node 1 -> Node 0

200 µsec

value (x0.0001)

100 km Hub High Priority Ring ETE Delay Histogram

100 μsec

Optical Speeds

roces Packe

value (x0.0001)

100 km Hub High Priority Medium Access Delay Histogram

100 km Hub Low Priority MAC ETE Delay Histogram

100 km Hub

100Hub SF

100Hub SF

100Hub SF

300,000

10,000

10,000

6,000

10,000

Low Priority Ring ETE Delay Histogram **Dual Transit Buffer**

tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D

tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D

tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D 20,000

tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D 20,000

tency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D

tency [sampling interval = 1e-06] of Delay Flow Low Priority Ring ETE D

ency [sampling interval = 1e-06] of Delay.Flow Low Priority Ring ETE D 20,000

400 μsec

Annotation: Node 1 -> Node 0

Annotation: Node 2 -> Node 0

Annotation: Node 3 -> Node 0

Annotation: Node 4 -> Node 0

Annotation: Node 5 -> Node 0

Annotation: Node 6 -> Node 0

Annotation: Node 7 -> Node 0

value (x0.001)

DA 1 PROCES

100 km Hub Low Priority Medium Access Delay Histogram

4 msec

roces

100 km Mesh - Throughput

Single Transit Buffer

Dual Transit Buffer

Optica

100 km Mesh High Priority MAC ETE Delay Histogram

AuroraNetics, Inc.

7/5/200

nign i

100 km Mesh High Priority Ring ETE Delay Histogram

AuroraNetics, Inc.

Packe

Optica

100 km Mesh High Priority Medium Access Delay Histogram

20 µsec

Optica

Packe

100 km Mesh Low Priority MAC ETE Delay Histogram

AuroraNetics, Inc.

Network Co

Optica Speeds

roces Packe

100 km Mesh Low Priority Ring ETE Delay Histogram

D A T P R O C E S

100 km Mesh

Low Priority Medium Access Delay Histogram

HP Jitter Comparison

- Single transit buffer implementation compromises HP jitter
 - Nodes are bombarded with LP transit packets
 - Transit packets do not give HP transmit packets a chance to get into the ring
- Multi transit buffer implementation guarantees HP jitter bound by decoupling HP and LP traffic
 - For a store-and-forward buffer, while a transit packet is being stored, a transmit packet gets a chance to enter to the ring