

Extending SRP Based on 802.17 Feedback

Steven Wood Cisco Systems

Agenda

- Steering and Wrapping Co-existing
- Support for Bridging and Data Frame Formats
- Packet Error Handling
- Bandwidth Management
 - Congestion Control: Management vs Avoidance
 - Extending Fairness to Multiple Domains
- TTM for Standards Compliant Silicon

Steering and Wrapping

- Wrapping provides the fastest protection switching regardless of ring size with lowest packet loss
 - Many customers demand this feature
 - Others in .17 propose that steering is good enough
- 802.17 can support both and allow all vendors to satisfy their customers
 - Both wrapped and steered nodes can exist in the same ring
 - We will be providing a written proposal at the next meeting
 - Have to look at corner cases to make sure we are not missing something!

- Our PAR requires us to support 802.1D bridging
 - 802.17 will carry many types of traffic including:
 - IP, Ethernet, MPLS, PacketTDM, ...
- Consider the Ethernet Frame as an example

DA SA Type/ Length	Optional .1Q	Payload	FCS
-----------------------	--------------	---------	-----

- A Proposed RPR packet format supports Ethernet bridging by simple a prepend of the RPR header
 - Note: payload could be an IP, MPLS ... packet

RPR	DA	SA	Type/ Length	Optional .1Q	Payload	FCS
-----	----	----	-----------------	--------------	---------	-----

Support for Bridging

- No changes to Ethernet frame
 - simple mapping into .17 frame
 - RPR header check is recalculated hop by hop
 - no need to recalculate FCS at each node due to TTL
 - Inverting the FCS after error detection is a good idea
 - any errors introduced in system or ring will be caught
 - check FCS at each node and log error at first node
- Header must contain TTL, some mode, control bits and some form of Header protection
 - Is a simple parity bit enough, maybe not?
 - Anything else missing?

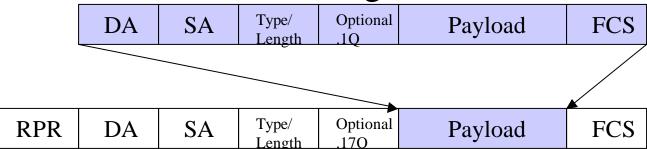
Support for Bridging

- Support for Unknown Unicast
 - alter packet accept logic to check if packet address is unknown and if so replicate packet into TB and copy to host
 - Topology DB can be used to fill filtering DB to determine unknown unicast
- The Source strip mechanism needs to be augmented
 - When a bridge injects a packet, the SA is stored in the filtering DB and checked to strip the packet after 1 loop.
 - TTL mechanism completes task if node goes insane
 - Requires TTL set correctly to number of nodes on ring
 - Requires TTL to be decremented by nodes in a passthru state

Why Not Protect Addresses?

- Is it necessary to imbed the RPR header & HEC within the packet and protect the DA/SA?
 - Delivering a packet with good address and bad payload does not add a lot of value
 - Do you need to count who was going to get the packet?
 - This count is incomplete due to the cases where:
 - Error is in the header
 - Packet was dropped at a bridge due to congestion or packet error
 - Source/Destination need to count packets sent/received and then determine the loss
 - Node aggregate counting can be done for reasonable cost in the MAC, flow based counting is prohibitively expensive
- Protocols know how to deal with lost packets

Does the MAC Need Counters


- Customers have requested per node traffic measurement capability
 - Allows traffic monitoring / engineering to occur
 - Can determine how much aggregate traffic is flowing between all nodes in the ring
 - Can be used to determine exactly how many packets went missing between two nodes on the ring
 - Per flow counting is outside the scope of the MAC
 - can be implemented outside as a value add
 - Per node accounting cost in Silicon area is reasonable
 - 256 entry CAM plus counters max

Encapsulating Bridging

- Encapsulating bridging will have advantages over Transparent bridging
 - Many vendors already see this as the best solution
 - Simple mapping of the Ethernet frame into a .17 frame
 - The DA and SA of the .17 frame are from the set of MAC addresses on the ring

Encapsulating Bridging

Advantages

- Complete Customer Separation with optional .17Q
- No change to Ethernet frame
 - simple mapping into .17 frame
 - RPR header check is recalculated hop by hop
 - no need to recalculate FCS at each node
 - any errors introduced in system or ring will be caught

Disadvantage

 Our PAR does not currently request the ability to define this, we need to finesse it

Bandwidth Management

- SRP algorithm performs congestion management rather than avoidance
 - Coupled with the SRP transit path design it provides
 - good delay and jitter performance for high priority traffic without a requirement to underutilize links or pre-provision traffic
 - Simple interface between MAC and upper layer
 - Simple implementation that allows more complex algorithms to be layered on top allowing differentiation at the box level
 - Per destination queuing not required, but can be added on top

Bandwidth Management

- SRP does not require the participation of every node on the ring in every BW allocation decision
 - Messages only flow within a local congestion domain
 - Relatively immune to lost BW allocation messages
 - Multiple non overlapping local fairness domains can occur around ring without requiring per destination queuing
 - Most avoidance schemes require the ring be underutilized by some amount
 - No such requirement in SRP

Head Of Line Blocking

- Aggregation traffic patterns do not require further optimization of per destination queues
 - What percentage of .17 traffic is aggregation?
- Avoidance or Management schemes do not in and of themselves prevent HOL blocking
 - How to solve HOL blocking in general?
 - Requires per destination transmit queues plus
 - appropriate BW usage messages

Head Of Line Blocking

- Requiring Per Destination Queues as part of the MAC (or above it) is not reasonable and should not be part of the standard
 - Forces everyone to add additional HW (cost)
 - Removes differentiation and commoditizes the box
- Allow people to choose whether to add this complexity as part of their differentiation

Extensions to SRP

- The SRP algorithm (today) does not support the concept of per Destination Queues
- It can be extended to do so
 - BW allocation message carries the source address of the node that is experiencing congestion (choke point)
 - Today this message only travels partway around the ring
 - Allow it to travel the entire ring, so all nodes know about the choke point and how much BW can get through it
 - Queuing chip above the MAC then controls ingress into the ring based on where the packets are going and the choke point information
 - MAC does not rate limit above traffic based on old FA

Extensions to SRP Fairness

- Other extensions are possible
 - If they provide improvements to real problems they should be explored
 - We would like to work in 802.17 to investigate:
 - Minimizing the size of the transit buffers
 - Layering of per Destination Queues on top of basic BW management
 - Shaping of ingress traffic as part of the MAC to provide better jitter/delay
 - Algorithms and HW extensions that could allow both styles of transit path design to co-exist
 - Transit path implementation specifics is not a part of the standard
 - Single transit queue and multiple transit queues can co-exist
 - Some of these changes will not be backwards compatible to current SRP implementations

TTM for Standard Si

- SRP is currently the only fully described proposal
 - Definitely the most studied and deployed
 - We need this level of description and study of all proposals
- Changes to SRP can insure a level playing field for everyone
 - 802.17 Si can be available next year by multiple vendors
 - Everyone gets access at the same time