

Weighted Fairness Performance Scenarios

Khaled Amer AmerNet

IEEE 802.17 Plenary Meeting Vancouver, BC, Canada July 2002

Background

- RAH/FAH adhoc decided that it would be beneficial to have an annex with scenarios that may have fairness/performance issues
- Only some of these scenarios are presented here, others are in annex J
- Can be used as implementation guidelines

Objectives

- Identify scenarios that may have fairness/performance implications
- Show the ideal target for a fairness mechanism
- Show the effect of not having a fairness mechanism as well as potential fairness problems

Convention Used

Ideal Target

Potential problem

Parking Lot Scenario #1

Parking Lot Scenario #1 ...

- Concern:
 - Station #1 consumes total BW
- Solution:
 - Throttle upstream node using fairness control messages
- Applicable:
 - Addressed by single choke and multichoke fairness algorithms

Parking Lot Scenarios #2

Parking Lot Scenario #2 ...

- Concern:
 - Station #1 is overly restricted
- Solution:
 - Have fairness algorithm divide BW evenly between upstream stations
- Applicable:
 - Addressed by single choke and multichoke algorithms

Parallel Parking Lot

Parallel Parking Lot ...

- Concern:
 - Flow [2,3] is restricted by congestion on link [5,6]
- Solution:
 - Have fairness algorithm provide congestion info and hop-count to congestion point
 - Provide support for VDQ for various hop-count distances
- Applicable:
 - When hop count is not reported
 - Addressed by single choke and multi-choke algorithms with VDQ

Multi-flow Parking Lot

 Illustrates support of weighted fairness with aggregate flows

Multi-flow Parking Lot ...

- Concern:
 - Flows from node 4 get more than 25% BW which conflicts with source-based fairness
- Solution:
 - Have fairness algorithm provide source-based fairness
- Applicable:
 - Addressed by single choke and multi-choke algorithms

Dual Exit Parking Lot

• Illustrate effect of having multiple choke points on the ring

Dual Exit Parking Lot ...

Concern:

 Flows traversing through link [4,5] are overly throttled because they only observe congestion on link [6,7]

• Solution:

 All stations should be made aware of all choke points and not just the worst one

Applicable:

- Problem occurs with single choke fairness algorithm
- Solved using multi-choke fairness algorithm

Choked high/low BW pair

Illustrates potential for oscillations

Choked high/low BW pair ... (Ramp time dominates prop time)

Choked high/low BW pair ...

Concern:

 Flows from node 1 are unnecessarily throttled in a cyclical fashion which reduces BW utilization

• Solution:

 A solution is to have fairness algorithm provide information about the whole ring, and react based on ring conditions

Applicable:

- Problem occurs with aggressive mode
- Worst case occurs with two stations far apart

Conclusions

- These scenarios (and others) are recommended by the RAH/FAH to be added as informative text in Annex J to help understand the implications of various fairness algorithms
- Behavior of fairness algorithms need to be simulated to demonstrate how they operate in these scenarios